Skip to main content
Log in

Field Stability Tests of Polyethylene Composites with Organomineral Biocidal Additives in Aqueous Environments

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Laboratory and field stability tests for a composite based on low-density polyethylene with an organomineral biocidal additive to the effects of aqueous media have been carried out. As an organomineral additive, polyhexamethyleneguanidine hydrochloride (a high-molecular-weight nontoxic biocide used in antiseptic solutions) immobilized on an inorganic carrier (montmorillonite) was used to improve the quality of distribution of the organomineral additive in a thermoplastic polymer (without loss of the biocidal properties of polyguanidine) and to prevent polyguanidine from being washed out of the composite during operation. The composition and structure of the composite with an organomineral additive remain unchanged after exposure to distilled water and model seawater. Field tests of the composites in seawater at a depth of 1.5 m in a tropical climate revealed that there were no polyguanidine leaching from the material even after 21 months of exposure of the samples. The samples without an organomineral additive undergo insignificant photo-oxidative aging, whereas the molecular structure of the polymer in the composite with the additive is unchanged. Thus, the studied organomineral additive has a photostabilizing effect on polyethylene. When the samples are exposed to seawater, there is a slight decrease in the strength of the samples and an increase in the elastic modulus, which is associated with an increase in the degree of crystallinity of polyethylene during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. L. Levinskaite, J. Environ. Eng. 144 (7), 51 (2018).

    Article  Google Scholar 

  2. J. D. Gu, Environ. Sci. Pollut. Res. 28 (2), 1278 (2021).

    Article  Google Scholar 

  3. F. Kawai, Biosci. Biotechnol. Biochem. 74 (9), 1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Zheng, E. K. Yanful, and A. S. Bassi, Crit. Rev. Biotechnol. 25 (4), 243 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. K. Karkanorachaki, P. Tsiota, G. Dasenakis, E. Syranidou, N. Kalogerakis, Microplastics 1 (1), 85 (2022).

    Article  Google Scholar 

  6. M. V. Zhurina, A. Yu. Kallistova, A. E. Panyushkina, A. V. Gannesen, S. V. Mart’yanov, V. A. Gerasin, V. K. Plakunov, Microbiology (Moscow) 89 (4), 396 (2020).

    Article  CAS  Google Scholar 

  7. T. Ahamad and N. Nishat, J. Appl. Polym. Sci. 107 (4), 2280 (2008).

    Article  CAS  Google Scholar 

  8. N. Nishat, S. Ahmad, and T. Ahamad, J. Appl. Polym. Sci. 101 (3), 1347 (2006).

    Article  CAS  Google Scholar 

  9. L. Qian, Y. Guan, B. He, and H. Xiao, Polymer 49 (10), 2471 (2008).

    Article  CAS  Google Scholar 

  10. M. K. Oule, R. Azinwi, A. M. Bernier, T. Kablan, A. M. Maupertuis, S. Mauler, L. Diop, J. Med. Microbiol. 57 (12), 1523 (2008).

    Article  PubMed  Google Scholar 

  11. S. S. Ray and M. Okamoto, Prog. Polym. Sci. 28 (11), 1539 (2003).

    Article  CAS  Google Scholar 

  12. B. K. G. Theng, Formation and Properties of Clay–Polymer Complexes (Elsevier, Amsterdam, 2012).

    Google Scholar 

  13. V. A. Gerasin, D. I. Mendeleev, V. V. Kurenkov, M. R. Menyashev, Russ. J. Appl. Chem. 91 (8), 1297 (2018).

    Article  CAS  Google Scholar 

  14. V. A. Gerasin, N. A. Sivov, M. R. Menyashev, D. I. Mendeleev, A. V. Yakovleva, D. V. Serdyukov, RU Patent No. 2679147 (2019).

  15. V. A. Gerasin, N. A. Sivov, M. R. Menyashev, V. V. Kurenkov, A. V. Yakovleva, D. V. Serdyukov, RU Patent No. 2679804 (2019).

  16. C. Breen, Appl. Clay Sci. 15 (1–2), 187 (1999).

    Article  CAS  Google Scholar 

  17. M. A. Dahlgren, P. M. Claesson, and R. Audebert, J. Colloid Interface Sci. 166 (2), 343 (1994).

    Article  CAS  Google Scholar 

  18. G. Li, K. Gao, and G. Gao, Photochem. Photobiol. 87 (2), 329 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. H. Qin, S. Zhang, H. Liu, S. Xie, M. Yang, D. Shen, Polymer 46 (9), 3149 (2005).

    Article  CAS  Google Scholar 

  20. P. O. Bussière, J. Peyroux, G. Chadeyron, S. Therias, Polym. Degrad. Stab. 98 (12), 2411 (2013).

    Article  Google Scholar 

  21. A. Tidjani, R. Arnaud, and A. Dasilva, J. Appl. Polym. Sci. 47 (2), 211 (1993).

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment of the Topchiev Institute of Petrochemical Synthesis (Russian Academy of Sciences) and in accordance with the Research Program of the Joint Vietnam-Russia Tropical Science and Technology Research Center, theme T1.9. The study was performed with the instruments of the Shared-Use Center at the Topchiev Institute of Petrochemical Synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Mendeleev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendeleev, D.I., Legkov, S.A., Tikhomirov, V.A. et al. Field Stability Tests of Polyethylene Composites with Organomineral Biocidal Additives in Aqueous Environments. Polym. Sci. Ser. A 65, 111–118 (2023). https://doi.org/10.1134/S0965545X23700694

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700694

Navigation