Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T06:16:42.762Z Has data issue: false hasContentIssue false

Comparing the cognitive load of gesture and action production: a dual-task study

Published online by Cambridge University Press:  04 July 2023

Autumn B. Hostetter*
Affiliation:
Department of Psychology, Kalamazoo College, Kalamazoo, MI, USA
Sonal Bahl
Affiliation:
Department of Psychology, Kalamazoo College, Kalamazoo, MI, USA
*
Corresponding author: Autumn B. Hostetter; Email: autumn.hostetter@kzoo.edu

Abstract

Speech-accompanying gestures have been shown to reduce cognitive load on a secondary task compared to speaking without gestures. In the current study, we investigate whether this benefit of speech-accompanying gestures is shared by speech-accompanying actions (i.e., movements that leave a lasting trace in the physical world). In two experiments, participants attempted to retain verbal and spatial information from a grid while describing a pattern while gesturing, while making the pattern, or while keeping hands still. Producing gestures reduced verbal load compared to keeping hands still when the pattern being described was visually present (Experiment 1), and this benefit was not shared by making the pattern. However, when the pattern being described was not visually present (Experiment 2), making the pattern benefited verbal load compared to keeping hands still. Neither experiment revealed a significant difference between gesture and action. Taken together, the findings suggest that moving the hands in meaningful ways can benefit verbal load.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. https://doi.org/10.1016/S0079-7421(08)60452-1CrossRefGoogle Scholar
Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553573. https://doi.org/10.1037/0033-299.130.4.553CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In Psychology and the real world: Essays illustrating fundamental contributions to society (pp. 5664). Worth Publishers.Google Scholar
Chu, M., & Kita, S. (2016). Co-thought and co-speech gestures are generated by the same action generation process. Journal of Experimental Psychology: Learning, Memory, & Cognition, 42, 257270. https://doi.org/10.1037/a0021790Google ScholarPubMed
Chu, M., Meyer, A., Foulkes, L., & Kita, S. (2014). Individual differences in frequency and saliency of speech-accompanying gestures: The role of cognitive abilities and empathy. Journal of Experimental Psychology: General, 143(2), 694709. https://doi.org/10.1037/a0033861CrossRefGoogle ScholarPubMed
Church, R. B., Kelly, S., & Holcombe, D. (2014). Temporal synchrony between speech, action, and gesture during language production. Language, Cognition, and Neuroscience, 29(3), 345354. https://doi.org/10.1080/01690965.2013.857783CrossRefGoogle Scholar
Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25(2), 257271.CrossRefGoogle Scholar
Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2010). Gestures make memories that last. Journal of Memory and Language, 63(4), 465475. https://doi.org/10.1016/j.jml.2010.07.002CrossRefGoogle ScholarPubMed
Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements, lighten working memory load when explaining math. Language, Cognition, and Neuroscience, 27(4), 594610. https://doi.org/10.1080/01690965.2011.567074Google Scholar
Goldin-Meadow, S., & Alibali, M. W. (2013). Gesture’s role in speaking, learning, and creating language. Annual Review of Psychology, 64, 257283. https://doi.org/10.1146/annurev-psych-113011-143802CrossRefGoogle ScholarPubMed
Goldin-Meadow, S., & Beilock, S. (2010). Action’s influence on thought: The case of gesture. Perspectives on Psychological Science, 5, 664674. https://doi.org/10.1177/1745691610388764CrossRefGoogle ScholarPubMed
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516522. https://doi.org/10.1111/1467-9280.00395CrossRefGoogle ScholarPubMed
Hostetter, A. B. (2011). When do gestures communicate? A meta-analysis. Psychological Bulletin, 137, 297315. https://doi.org/10.1037/a0022128CrossRefGoogle ScholarPubMed
Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15, 495514. https://doi.org/10.3758/PBR.15.3.495CrossRefGoogle ScholarPubMed
Hostetter, A. B., & Alibali, M. W. (2019). Gesture as simulated action: Revisiting the framework. Psychonomic Bulletin & Review, 26, 721752. https://doi.org/10.3758/s13423-018-1548-0CrossRefGoogle ScholarPubMed
Hostetter, A. B., Alibali, M. W., & Kita, S. (2007). I see it in my hands’ eye: Representational gestures reflect conceptual demands. Language, Cognition, and Neuroscience, 22(3), 313336. https://doi.org/10.1080/0169096060600632812Google Scholar
Hostetter, A. B., Pouw, W., & Wakefield, E. M. (2020). Learning from gesture and action: An investigation of memory for where objects went and how they got there. Cognitive Science, 44, e12889. https://doi.org/10.1111/cogs.12889CrossRefGoogle Scholar
Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory. Neuroscience, 139(1), 3950. https://doi.org/10.1016/j.neuroscience.2005.07.002CrossRefGoogle ScholarPubMed
Kelly, S., Healey, M., Özyürek, A., & Holler, J. (2015). The processing of speech, gesture and action during language comprehension. Psychonomic Bulletin & Review, 22, 517523. https://doi.org/10.3758/s13423-014-0681-7CrossRefGoogle ScholarPubMed
Kita, S., Alibali, M. W., & Chu, M. (2017). How do gestures influence thinking and speaking? The gesture-for-conceptualization hypothesis. Psychological Review, 124, 245266. https://doi.org/10.1037/rev0000059CrossRefGoogle ScholarPubMed
Kita, S., & Davies, T. S. (2009). Competing conceptual representations trigger co-speech representational gestures. Language and Cognitive Processes, 24, 761775. https://doi.org/10.1080/01690960802327971CrossRefGoogle Scholar
Krauss, R. M. (1998). Why do we gesture when we speak? Current Directions in Psychological Science, 7, 5460. https://doi.org/10.1111/1467-8721.ep13175642CrossRefGoogle Scholar
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software, 82 (13), 126. https://doi.org/10.18637/jss.v082.i13CrossRefGoogle Scholar
Marstaller, L., & Burianova, H. (2013). Individual differences in the gesture effect on working memory. Pscyhonomic Bulletin & Review, 20, 496500. https://doi.org/10.3758/s13423-012-0365-0CrossRefGoogle ScholarPubMed
Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction: Using the hands to learn math. Psychological Science, 25, 903910. https://doi.org/10.1177/0956797613518351CrossRefGoogle Scholar
Novack, M. A., & Goldin-Meadow, S. (2017). Gesture as representational action: A paper about function. Psychonomic Bulletin and Review, 24, 652665. https://doi.org/10.3758/s13423-016-1145-zCrossRefGoogle Scholar
Novack, M. A., Wakefield, E. M., & Goldin-Meadow, S. (2016). What makes a movement a gesture? Cognition, 146, 339348. https://doi.org/10.1016/j.cognition.2015.10.014CrossRefGoogle ScholarPubMed
Ping, R. M., & Goldin-Meadow, S. (2010). Gesturing saves cognitive resources when talking about nonpresent objects. Cognitive Science, 34, 602619. https://doi.org/10.1111/j.1551-6709.2010.0112.xCrossRefGoogle ScholarPubMed
Pouw, W. T., Mavilidi, M. F., van Gog, T., & Paas, F. (2016). Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity. Cognitive Processing: International Quarterly of Cognitive Science, 17(3), 269277. http://doi.org/10.0.7/s10339-016-0757-6CrossRefGoogle ScholarPubMed
So, W. C., Ching, T. H.-W., Lim, P. W., Cheng, X., & Ip, K. Y. (2014). Producing gestures facilitates route learning. PLoS One, 9(11), e112543. https://doi.org/10.1371/journal.pone.0112543CrossRefGoogle ScholarPubMed
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127154. https://doi.org/10.1016/0749-596X(89)90040-5CrossRefGoogle Scholar
Wagner, S., Nusbaum, H., & Goldin-Meadow, S. (2004). Probing the mental representation of gesture: Is hand-waving spatial? Journal of Memory and Language, 50, 395407. https://doi.org/10.1016/j.jml.2004.01.002CrossRefGoogle Scholar
Wesp, R., Hesse, J., Keutmann, D., & Wheaton, K. (2001). Gestures maintain spatial imagery. The American Journal of Psychology, 114 (4), 591600. https://doi.org/10.2307/1423612CrossRefGoogle Scholar