Skip to main content
Log in

A Sol-Gel Technology for Creating Thin-Film Oxide Materials for a Variety of Uses: A Brief Review

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract—

The sol-gel process for making thin-film oxide materials is a low-cost and versatile way of creating nanostructures. This method provides a uniform distribution of elements of multicomponent systems over the surface of various solids. The thickness and morphology of the surface of oxide films are largely determined by the composition, structure, and processes occurring in the sols from which the films are obtained. The selection of precursors is essential in this method to acquire the desired composite oxide materials. In this paper, we present an overview of the results of studies on the sol-gel production of thin-film oxide materials based on SiO2ExOy (E = a rare earth element (REE), Sn, Mn, Co, Ni, Ca, P), TiO2ExOy (E = Si, Sn, Co, Ni), SnO2ExOy (E = In, Sb, Ce), and ZrO2. In the main part of the work, we consider sol-gel processes (hydrolysis, polycondensation, complex formation) involving tetraethoxysilane, tetrabutoxytitanium, antimony(III), and tin(II, IV) acetylacetonate complexes, as well as polynuclear zirconium(IV) clusters. We explore the processes of obtaining a sol, leading to its film-forming ability, the composition of micelles, the size of colloidal particles, and the change in the composition of micelles when an additive is introduced to the tetraethoxysilane-based sol. We discuss the effect of adding salts of various natures, organic ligands, and solvents on the time stability of sols. We then consider the effect of the hydrolyzing ability of doubly charged nickel, manganese, and cobalt cations on the rate of hydrolysis and polycondensation of tetraethoxysilane. Based on the studies mentioned above, we propose a general technological approach for creating sols that are resistant to film formation, using the example of tetraethoxysilane and tetrabutoxytitanium sols. We consider the relationship between the network structure of a tetraethoxysilane sol and the network structure of oxide films by the example of SiO2–CeO2, SiO2–NiO, SiO2–Mn2O3, and SiO2–Co3O4. The effect of the rate of thermal treatment of gels on the morphology of oxide films is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

REFERENCES

  1. Periyasamy, A.P., Venkataraman, M., Kremenakova, D., Militky, J., and Zhou, Y., Materials, 2020, vol. 13, p. 1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inayat, A., Reinhardt, B., Herwig, J., Kuster, C., Uhlig, H., Krenkel, S., Raedlein, E., and Enke, D., New J. Chem., 2016, vol. 40, p. 4095.

    Article  CAS  Google Scholar 

  3. Kim, H.K., Kang, S.-J., Choi, S.-K., Min, Y.-H., and Yoon, C.-S., Chem. Mater., 1999, vol. 11, p. 779.

    Article  CAS  Google Scholar 

  4. Owens, G.J., Singh, R.K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., Kim, H.-W., and Knowles, J.C., Prog. Mater. Sci., 2016, vol. 77, p. 1.

    Article  CAS  Google Scholar 

  5. Aleksandrova, M., Jivov, B., and Lakov, L., Mater. Sci., 2020, vol. 3, p. 83.

    Google Scholar 

  6. Jmal, N. and Bouaziz, J., Mater. Sci. Eng., C, 2017, vol. 71, p. 279.

    Article  CAS  Google Scholar 

  7. Borilo, L.P., Kozik, V.V., Lyutova, E.S., Zharkova, V.V., and Brichkov, A.S., Glass Ceram., 2019, vol. 76, nos. 7–8, p. 315.

    Article  CAS  Google Scholar 

  8. Grebenshchikov, I.V., Vlasov, A.G., Neporent, B.S., and Suikovskaya, N.V., Prosvetlenie optiki (Enlightenment of Optics), Moscow: Gostekhizdat, 1946.

  9. Suikovskaya, N.V., Khimicheskie metody polucheniya tonkikh i prozrachnykh plenok (Chemical Methods of Obtaining Thin Transparent Films), Leningrad: Khimiya, 1971.

  10. Palatnik, L.S. and Sorokin, V.K., Osnovy plenochnogo poluprovodnikovogo materialovedeniya (Fundamentals of Film Semiconductor Materials Science), Moscow: Energiya, 1973.

  11. Atkarskaya, A.B., Steklo Keram., 1977, vol. 10, p. 14.

    Google Scholar 

  12. Semchenko, G.D., Zol’-gel’ process v keramicheskoi tekhnologii (Sol-Gel Process in Ceramic Technology), Kharkov, 1997.

    Google Scholar 

  13. Borilo, L.P., Tonkoplenochnye neorganicheskie nanosistemy (Thin-Film Inorganic Nanosystems), Tomsk: Tomsk. Gos. Univ., 2003.

  14. Kozik, V.V., Borilo, L.P., and Tureczkova, O.V., Kondens. Sredy Mezhfaznye Granitsy, 2002, vol. 4, no. 3, p. 231.

    Google Scholar 

  15. Vereshhagin, V.I., Kozik, V.V., Borilo, L.P., et al., Polifunktsional’nye neorganicheskie materialy na osnove prirodnykh i iskusstvennykh soedinenii (Polyfunctional Inorganic Materials Based on Natural and Synthetic Compounds), Tomsk: Tomsk. Gos. Univ., 2002.

  16. Brichkova, V.Yu., Brichkov, A.S., Egorova, L.A., Zabolotskaya, A.V., and Ivanov, V.K., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 11, p. 139.

    Google Scholar 

  17. Brichkova, V.Yu., Kozik, V.V., and Borilo, L.P., Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 6, p. 92.

    Google Scholar 

  18. Brichkova, V.Yu., Extended Abstract of Cand. Sci. (Eng.) Dissertation, Tomsk: Tomsk Polytech. Univ., 2011.

  19. Borilo, L.P., Petrovskaya, T.S., Lyutova, E.S., and Spivakova, L.N., Izv. Tomsk. Politekh. Univ., 2011, vol. 319, no. 3, p. 43.

    Google Scholar 

  20. Kuznetsova, S.A., Khalipova, O.S., and Kozik, V.V., Plenki na osnove dioksida ceriya: poluchenie, svojstva, primenenie (Cerium Dioxide-Based Films: Production, Properties, Applications), Tomsk: Tomsk. Gos. Univ., 2016.

  21. Brichkov, A.S., Extended Abstract of Cand. Sci. (Eng.) Dissertation, Tomsk: Tomsk Polytech. Univ., 2013.

  22. Brichkov, A.S., Vestn. Kuzbass. Gos. Tekh. Univ., 2013, vol. 4, p. 100.

    Google Scholar 

  23. Brichkov, A.S., Brichkova, V.Yu., and Kozik, V.V., Mater. Vseross. konf. “Khimiya i khimicheskaya tekhnologiya: dostizheniya i perspektivy” (Proc. All-Russ. Conf. “Chemistry and Chemical Technology: Achievements and Prospects”), Kemerovo, 2012, p. 72.

  24. Shamsutdinova, A.N. and Kozik, V.V., Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, p. 699.

    CAS  Google Scholar 

  25. Kuznetsova, S., Khalipova, O., Chen, Y.-W., and Kozik, V., Nanosyst.: Phys., Chem., Math., 2022, vol. 13, no. 2, p. 193.

    CAS  Google Scholar 

  26. Kuznetsova, S.A. and Borilo, L.P., Glass Ceram., 2013, vol. 70, p. 429.

    Article  Google Scholar 

  27. Kuznetsova, S.A., Malinovskaya, T.D., Zaitseva, E.S., and Sachkov, V.I., Russ. J. Appl. Chem., 2004, vol. 77, no. 10, p. 1609.

    Article  CAS  Google Scholar 

  28. Kuznetsova, S.A. and Malinovskaya, T.D., Fundam. Probl. Sovrem. Materialoved., 2006, vol. 3, no. 4, p. 50.

    Google Scholar 

  29. Khalipova, O.S. and Kuznetsova, S.A., Russ. J. Inorg. Chem., 2013, vol. 58, no. 8, p. 892.

    Article  CAS  Google Scholar 

  30. Kozik, V.V., Chernov, E.B., Borilo, L.P., Turetskova, O.V., and Shul’pekov, A.M., Russ. J. Appl. Chem., 2004, vol. 77, no. 2, p. 182.

    Article  CAS  Google Scholar 

  31. Kozik, V.V., Kuznetsova, S.A., and Borilo, L.P., Khim. Interesakh Ustoich. Razvit., 2001, vol. 11, no. 5, p. 739.

    Google Scholar 

  32. Dyukov, V.V., Kuznetsova, S.A., Borilo, L.P., and Kozik, V.V., Russ. J. Appl. Chem., 2001, vol. 74, no. 10, p. 1636.

    Article  CAS  Google Scholar 

  33. Kozik, V.V., Borilo, L.N., Chernov, E.B., and Ly`skova, E.A., Izv. Tomsk. Politekh. Univ., 2006, vol. 309, no. 5, p. 64.

    Google Scholar 

  34. Gryaznov, R.V., Borilo, L.P., Kozik, V.V., and Shul’pekov, A.M., Inorg. Mater., 2001, vol. 37, no. 7, p. 698.

    Article  CAS  Google Scholar 

  35. Siloksanovaya svyaz’ (Siloxane Bonding), Voronkov, M.G., Ed., Novosibirsk: Nauka, 1976.

    Google Scholar 

  36. Borilo, L.P., Kuznetsova, S.A., Kozik, V.V., Zabolotskaya, A.V., and Mal’chik, A.G., Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, p. 1065.

    Article  CAS  Google Scholar 

  37. Borilo, L.P. and Lyutova, E.S., Inorg. Mater., 2017, vol. 53, no. 4, p. 400.

    Article  CAS  Google Scholar 

  38. Petrovskaya, T., Kuznetsova, S., Borilo, L., and Kozik, V., AIP Conf. Proc., 2016, vol. 1772, p. 020006.

  39. Kozik, V.V., Petrovskaya, T.S., and Borilo, L.P., Khim. Khim. Tekhnol., 2010, vol. 53, no. 8, p. 120.

    CAS  Google Scholar 

  40. Khalipova, O.S., Kuznetsova, S.A., and Kozik, V.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 9, p. 913.

    Article  CAS  Google Scholar 

  41. Erdey-Gruz, T., Transport Phenomena in Aqueous Solutions, Budapest: Akademiai Kiado, 1974.

    Google Scholar 

  42. Kuznetsova, S.A., Malinovskaya, T.D., and Sachkov, V.I., Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 2, p. 105.

    Google Scholar 

  43. Kuznetsova, C.A., Mishenina, L.N., and Kozik, V.V., Vestn. Kuzbass. Gos. Tekh. Univ., 2013, vol. 6, no. 100, p. 131.

    Google Scholar 

  44. Kozik, V.V., Borilo, L.P., and Shul’pekov, A.M., Inorg. Mater., 2001, vol. 37, no. 1, p. 47.

    Article  CAS  Google Scholar 

  45. Bose, A.C., Kalpana, D., Thangadurai, P., and Ramasamy, S., Power Sources, 2002, vol. 107, p. 138.

    Article  CAS  Google Scholar 

  46. Yang, Y., Zhang, Q., Zhang, B., Mi, W.B., Chen, L., Li, L., Zhao, C., and Diallo, K.E.M., Appl. Surf. Sci., 2012, vol. 258, p. 4532.

    Article  CAS  Google Scholar 

  47. Kaleji, B.K. and Sarraf-Mamoory, R., Mater. Res. Bull., 2012, vol. 47, p. 362.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Development Program of Tomsk State University (Priority-2030), project no. 2.4.1.22 LMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuznetsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, S.A., Khalipova, O.S., Lyutova, E.S. et al. A Sol-Gel Technology for Creating Thin-Film Oxide Materials for a Variety of Uses: A Brief Review. rev. and adv. in chem. 12, 264–269 (2022). https://doi.org/10.1134/S2634827623700083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700083

Keywords:

Navigation