Skip to main content
Log in

The Effect of Alkyl Substitutes on the Characteristics of Charge Transfer in Stacks of D–π–A–π–D Molecules

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the results of calculations using the density functional method to determine the parameters governing charge transfer rates in stacks composed of “donor (D)–π-bridge–acceptor (A)–π-bridge–donor (D)” molecules. The Marcus theory is employed to calculate the reorganization energy, which is a property of individual molecules, and the charge transfer integral, which is calculated for molecular dimers. Another important structural property of the molecules is the side substituent of the acceptor block, that is, short linear or branched alkyl chains. These can influence the reorganization energy values and the morphology of the film, which, in turn, impacts the charge transfer integral. Finally, the Einstein–Smoluchowski formula is used to determine the electron and hole mobility for transport along the stacking direction. The calculated values are then compared to experimental data found in the literature for polymers with similar monomer units that only differ in the length of their acceptor block substituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kim, M., Un Ryu, S., Ah Park, S., Choi, K., Kim, T., Chung, D., and Park, T., Adv. Funct. Mater., 2020, vol. 30, no. 20, p. 1904545.

  2. Cates, N., Cho, E., Gysel, R., Risko, C., Coropceanu, V., Miller, C.E., Sweetnam, S., Sellinger, A., Heeney, M., McCulloch, R., Brédas, J.-L., Toney, M.F., and McGehee, M.D., Adv. Energy Mater., 2012, vol. 2, no. 10, p. 1208.

  3. Colladet, K., Fourier, S., Cleij, T., Lutsen, L., Gelan, J., Vanderzande, D., Huong Nguyen, L., Neugebauer, H., Sariciftci, S., Aguirre, A., Janssen, G., and Goovaerts, E. Macromolecules, 2007, vol. 40, no. 1, p. 65.

    Article  CAS  Google Scholar 

  4. Kim, J.-H., Song, C.E., Kang, I.-N., Shin, W.S., and Hwang, D.-H., Chem. Commun., 2013, vol. 49, p. 3248.

    Article  CAS  Google Scholar 

  5. Zhu, H., Huang, W., Huang, Y., Yang, J., and Wang, W., Dyes Pigm., 2016, vol. 127, p. 37.

    Article  CAS  Google Scholar 

  6. Sekitani, T. and Someya, T., Adv. Mater., 2010, vol. 22, no. 20, p. 2228.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, M., Baek, P., Akbarinejad, A., Barker, D., and Travas-Sejdic, J., J. Mater. Chem. C, 2019, vol. 7, no. 19, p. 5534.

    Article  CAS  Google Scholar 

  8. Guskova, O. and Seidel, C., Soft Matter, 2012, vol. 8, no. 10, p. 2833.

    Article  CAS  Google Scholar 

  9. Ditte, K., Perez, J., Chae, S., Hambsch, M., Al-Hussein, M., Komber, H., Formanek, P., Mannsfeld, S.C.B., Fery, A., Kiriy, A., and Lissel, F., Adv. Mater., 2020, vol. 33, no. 4, p. 2005416.

  10. Zhang, G., McBride, M., Persson, N., Lee, S., Dunn, T.J., Toney, M.F., Yuan, Z., Kwon, Y.-H., Chu, P.-H., Risteen, B., and Reichmanis, E., Chem. Mater., 2017, vol. 29, no. 18, p. 7645.

    Article  CAS  Google Scholar 

  11. Afzal, T., Javaid Iqbal, M., Zahir Iqbal, M., Sajjad, A., Ali Raza, M., Riaz, S., Arshad Kamran, M., Numan, A., and Naseem, S., Chem. Phys. Lett., 2020, vol. 750, p. 137507.

  12. Schroeder, B.C., Kurosawa, T., Fu, T., Chiu, Y.-C., Mun, J., Wang, G.-J.N., Gu, X., Shaw, L., Kneller, J.W.E., Kreouzis, T., Toney, M.F., and Bao, Z., Adv. Funct. Mater., 2017, vol. 27, no. 34, p. 1701973.

  13. Li, Y., Singh, S.P., and Sonar, P., Adv. Mater., 2010, vol. 22, no. 43, p. 4862.

    Article  CAS  PubMed  Google Scholar 

  14. Bronstein, H., Chem, Z., Ashraf, R.S., Zhan, W., Du, J., Durrant, J.R., Tuladhar, P.S., Song, K., Watkins, S.W., Geerts, Y., Wienk, M.M., Janssen, R.A.J., Anthopoulos, T., Sirringhaus, H., Heeney, M., and McCulloch, I., J. Am. Chem. Soc., 2011, vol. 133, no. 10, p. 3272.

    Article  CAS  PubMed  Google Scholar 

  15. Bijleveld, J.C., Verstrijden, R.A.M., Wienk, M.M., and Janssen, R.A.J., J. Mater. Chem., 2011, vol. 21, p. 9224.

    Article  CAS  Google Scholar 

  16. Armin, A., Wolfer, P., Shaw, P.E., Hambsch, M., Maasoumi, F., Ullah, M., Gann, E., McNeil, C.R., Li, J., Shi, Z., Burn, P.L., and Meredith, P., J. Mater. Chem. C, 2015, vol. 3, p. 10799.

    Article  CAS  Google Scholar 

  17. Guskova, O.A., Mena-Osteritz, E., Schillinger, E., Khalatur, P.G., Bauerle, P., and Khokhlov, A.R., J. Phys. Chem C, 2007, vol. 111, no. 19, p. 7165.

    Article  CAS  Google Scholar 

  18. Wang, X., Deng, W., Chen, Y., Wang, X., Ye, P., Wu, X., Yan, C., Zhan, X., Liu, F., and Huang, H., J. Mater. Chem. A, 2017, vol. 5, p. 5585.

    Article  CAS  Google Scholar 

  19. Yue, W., Zhao, Y., Shao, S., Tian, H., Xie, Z., Geng, Y., and Wang, F., J. Mater. Chem., 2009, vol. 19, p. 2199.

    Article  CAS  Google Scholar 

  20. Föster, A., Günter, F., Gemming, S., and Seifert, G., J. Phys. Chem. C, 2017, vol. 121, no. 7, p. 3714.

    Article  Google Scholar 

  21. Malagoli, M. and Brédas, J.L., Chem. Phys. Lett., 2000, vol. 327, nos. 1–2, p. 13.

    Article  CAS  Google Scholar 

  22. Raychev, D. and Guskova, O., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 8330.

    Article  CAS  PubMed  Google Scholar 

  23. Kera, S., Hosoumi, S., Sato, K., Fukagawa, H., Nagamatsu, S.-I., Sakamoto, Y., Suzuki, T., Huang, H., Chen, W., Wee, A.T.S., Coropceanu, V., and Ueno, N., J. Phys. Chem. C, 2013, vol. 117, no. 43, p. 22428.

    Article  CAS  Google Scholar 

  24. McMahon, D.P. and Troisi, A., J. Phys. Chem. Lett., 2010, vol. 1, no. 6, p. 941.

    Article  CAS  Google Scholar 

  25. Norton, J.E. and Brédas, J.L., J. Am. Chem. Soc., 2008, vol. 130, no. 37, p. 12377.

    Article  CAS  PubMed  Google Scholar 

  26. Nelsen, S.F., Blackstock, S.C., and Kim, Y., J. Am. Chem. Soc., 1987, vol. 109, no. 3, p. 677.

    Article  CAS  Google Scholar 

  27. Raychev, D., Mendez Lopez, R.D., Kiriy, A., Seifert, G., Sommer, J.-U., and Guskova, O. Macromolecules, 2019, vol. 52, no. 3, p. 904.

    Article  CAS  Google Scholar 

  28. Raychev, D., Seifert, G., Sommer, J.-U., and Guskova, O., J. Comput. Chem., 2018, vol. 39, no. 30, p. 2526.

    Article  CAS  PubMed  Google Scholar 

  29. Makarova, M.V., Semenov, S.G., and Guskova, O.A., Int. J. Quantum Chem., 2016, vol. 116, no. 20, p. 1459.

    Article  CAS  Google Scholar 

  30. Hutchison, G.R., Ratner, M.A., and Marks, T.J., J. Am. Chem. Soc., 2005, vol. 127, no. 48, p. 16866.

    Article  CAS  PubMed  Google Scholar 

  31. Karl, N., Synth. Met., 2003, vols. 133–134, p. 649.

    Article  Google Scholar 

  32. Wang, L.J., Peng, Q., Li, Q.K., and Shuai, Z., J. Chem. Phys., 2007, vol. 127, p. 044506.

  33. Hannewald, K. and Bobbert, P.A., Appl. Phys. Lett., 2004, vol. 85, no. 9, p. 1535.

    Article  CAS  Google Scholar 

  34. Podzorov, V., Menard, E., Rogers, J.A., and Gershenson, M.E., Phys. Rev. Lett., 2005, vol. 95, no. 22, p. 226601.

  35. Cornil, J., Beljonne, D., Calbert, J.P., and Brédas, J.-L., Adv. Mater., 2001, vol. 13, p. 1053.

    Article  CAS  Google Scholar 

  36. Valeev, E.F., Coropceanu, V., Silva, Filho., Salman, S., and Brédas, J.-L., J. Am. Chem. Soc., 2006, vol. 128, no. 30, p. 9882.

    Article  CAS  PubMed  Google Scholar 

  37. Karpov, Y., Erdmann, T., Stamm, M., Lappan, U., Guskova, O., Malanin, M., Raguzin, I., Beryozkina, T., Bakulev, V., Gunther, F., Gemming, S., Seifert, G., Hambsch, M., Mannsfeld, S., Voit, B., and Kiriy, A., Macromolecules, 2017, vol. 50, no. 3, p. 914.

    Article  CAS  Google Scholar 

  38. Hadjab, M. and Guskova, O., Vestn. Tver. Gos. Univ., Ser.: Khim., 2021, vol. 4, no. 46, p. 118.

    Google Scholar 

  39. Liu, H., Kantchev, E.A.B., Tan, H.S., and Norsten, T.B., J. Mol. Eng. Mater., 2013, vol. 1, no. 1, p. 1250003.

  40. Luňák, S., Jr., Weiter, M., and Vala, M., ChemPhysChem, 2022, vol. 23, no. 21, p. e202200252.

  41. Atahan-Evrenk, S., RSC Adv., 2018, vol. 8, p. 40330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Atahan-Evrenk, S. and Betul Atalay, F., J. Phys. Chem. A, 2019, vol. 123, no. 36, p. 7855.

    Article  CAS  PubMed  Google Scholar 

  43. Jin, R., Zhang, X., and Xiao, W., Molecules, 2020, vol. 25, no. 3, p. 667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reisjalali, M., Burgos-Mármol, J.J., Manurung, R., and Troisi, A., Phys. Chem. Chem. Phys., 2021, vol. 23, p. 19693.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Quantum-chemical calculations were performed on the HPC/ZIH supercomputer, Dresden University of Technology, and the Material Studio Machine of the Institute for Polymer Research of the Leibniz Scientific Association (Dresden).

Funding

The study was supported by Deutsche Forschungsgemeinschaft (DFG), project GU1510/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Guskova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, V.A., Guskova, O.A. The Effect of Alkyl Substitutes on the Characteristics of Charge Transfer in Stacks of D–π–A–π–D Molecules. rev. and adv. in chem. 12, 214–221 (2022). https://doi.org/10.1134/S2634827623700113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700113

Keywords:

Navigation