Skip to main content
Log in

Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents

  • REVIEW ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Bacterial transmission is considered one of the potential risks for communicable diseases. Nanotechnology could be beneficial in managing bacterial issues particularly. Based on their distinct physiochemical characteristics, the extraordinary antimicrobial effects of metal nanoparticles (NPs) offer such structures suitable for use both in vitro and in vivo as self-modified therapeutic agents. Due to their wide range of antimicrobial efficacy, diverse antimicrobial routes, and good biocompatibility, NPs have potential therapeutic aplication prospects. NPS restricts the establishment of bacterial resistance and broadens the scope of antimicrobial activity without binding with the bacterial cell to a particular receptor. As a result, several efficacy experiments on metal-based NPS published so far have promising findings on both Gram-positive and Gram-negative bacteria. This review is aimed to explore the most relevant types of metal NPs employed as antimicrobial agents, particularly those based on the Mn, Fe, Co, Cu, Ag, and Zn-based NPs, and to highlight their antimicrobial mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Muzambi, R., Bhaskaran, K., Brayne, C., Davidson, J.A., Smeeth, L., and Warren-Gash, C., J. Alzheimer’s. Dis., 2020, vol. 76, no. 4, p. 1609.

    Article  Google Scholar 

  2. Rose, D.R., and Sumner, S.C. J., Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, vol. 10, no. 3, p. e1413

  3. Banerjee, S. and van der Heijden, M.G., Nat. Rev. Microbiol., 2023, vol. 21, no. 1, p. 6.

    Article  CAS  PubMed  Google Scholar 

  4. Kaeder, E., Dorn-In, S., Gareis, M., and Schwaiger, K., Foods, 2022, vol. 11, no. 19, p. 3126.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vaskoska, R., Hostile microbiology, in Applied Food Science, Wernaart, B. and van der Meulen, B., Eds., Wageningen: Academic, 2022.

    Google Scholar 

  6. Shaheen, M.N., Rev. Med. Virol., 2022, vol. 32, no. 4, p. e2326.

  7. Askari, P., Yousefi, M., Foadoddini, M., Neshani, A., Aganj, M., Lotfi, N., Movaqar, A., Ghazvini, K., and Namaei, M.H., Curr. Microbiol., 2022, vol. 79, no. 4, p. 102.

    Article  CAS  PubMed  Google Scholar 

  8. Dien, L.T., Ngo, T.P.H., Nguyen, T.V., Kayansamruaj, P., Salin, K.R., Mohan, C.V., Rodkhum, C., and Dong, H.T., Rev. Aquacult., 2023, vol. 15, no. 1, p. 333.

    Article  Google Scholar 

  9. Dina, N.E., Tahir, M.A., Bajwa, S.Z., Amin, I., Valev, V.K., and Zhang, L., Biosens. Bioelectron., 2022, vol. 219, p. 114843.

  10. Terreni, M., Taccani, M., and Pregnolato, M., Molecules, 2021, vol. 26, no. 9, p. 2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hellberg, R.S., and Chu, E., Crit. Rev. Microbiol., 2016, vol. 42, no. 4, p. 548.

    Article  PubMed  Google Scholar 

  12. Chinemerem Nwobodo, D., Ugwu, M.C., Oliseloke Anie, C., Al-Ouqaili, M.T., Chinedu Ikem, J., Victor Chigozie, U., and Saki, M., J. Clin. Lab. Anal., 2022, vol. 36, no. 9, p. e24655.

  13. Henninot, A., Collins, J.C., and Nuss, J.M., J. Med. Chem., 2018, vol. 61, no. 4, p. 1382.

    Article  CAS  PubMed  Google Scholar 

  14. Shaw-Taylor, L., Econ. Hist. Rev., 2020, vol. 73, no. 3, p. E1.

  15. Jamhour, A., El-Kheir, A., Salameh, P., Abi Hanna, P., and Mansour, H., Am. J. Infect. Control, 2017, vol. 45, no. 4, p. 384.

    Article  PubMed  Google Scholar 

  16. Cook, M.A. and Wright, G.D., Sci. Transl. Med., 2022, vol. 14, no. 657, p. eabo7793.

  17. Spellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H.W., Scheld, W.M., Bartlett, J.G., and Edwards, J., Jr., Clin. Infect. Dis., 2008, vol. 46, no. 2, p. 155.

    Article  PubMed  Google Scholar 

  18. Wang, L., Hu, C., and Shao, L., Int. J. Nanomed., 2017, vol. 12, p. 1227.

    Article  CAS  Google Scholar 

  19. IUPAC: Compendium of Chemical Terminology, McNaught, A.D. and Wilkinson, A., Eds., Oxford: Blackwell, 1997, 2nd ed.

  20. Gubala, V., Johnston, J.L., Krug, H.F., Moore, C.J., Ober, C.K., Schwenk, M., and Vert, M., Pure Appl. Chem., 2018, vol. 90, no. 8, p. 1325.

    Article  CAS  Google Scholar 

  21. Reza, R. H., Bakhtiari, L., and Ochsner, A., Biomaterials and Their Applications, Berlin: Springer, 2015.

    Book  Google Scholar 

  22. Saurabh, B., in Natural Polymer Drug Delivery Systems, Cham: Springer, 2016, p. 33.

    Google Scholar 

  23. Andreas, E., and Howard, C.V., Adv. Drug Delivery Rev., 2012, vol. 64, no. 2, p. 129.

    Article  Google Scholar 

  24. Rahman, M.M., Islam, M.R., Akash, S., Harun-Or-Rashid, M., Ray, T.K., Rahaman, M.S., Islam, M., Anika, F., Hosain, M.K., Aovi, F.I., and Hemeg, H.A., Biomed. Pharmacother., 2022, vol. 153, p. 113305.

  25. Salata, O.V., J. Nanobiotechnol., 2004, vol. 2, p. 3.

    Article  Google Scholar 

  26. Youssef, A.M., Assem, F.M., Abdel-Aziz, M.E., Elaaser, M., Ibrahim, O.A., Mahmoud, M., and Abd El-Salam, M.H., Food Chem., 2019, vol. 270, p. 467.

    Article  CAS  PubMed  Google Scholar 

  27. Vimbela, G.V., Ngo, S.VM., Fraze, C., Yang, L., and Stout, D.A., Int. J. Nanomed., 2017, vol. 13, p. 6497.

    Article  Google Scholar 

  28. Bhattacharjee, R., Kumar, L., Mukerjee, N., Anand, U., Dhasmana, A., Preetam, S., Bhaumik, S., Sihi, S., Pal, S., Khare, T., and Chattopadhyay, S., Biomed. Pharmacother., 2022, vol. 155, p. 113658.

  29. Patil, S.P., Chaudhari, R.Y., and Nemade, M.S., Talanta Open, 2022, vol. 5, p. 100083.

  30. Alshameri, A.W. and Owais, M., OpenNano, 2022, vol. 8, p. 100077.

  31. Amutha, T., Rameshbabu, M., Razia, M., Bakri, M., Florence, S.S., Muthupandi, S., and Prabha, K., Spectrochim. Acta, Part A, 2023, vol. 287, no. 1, p. 121996.

  32. Singh, A., Gautam, P.K., Verma, A., Singh. V., Shivapriya, P.M., Shivalkar, S., and Samanta, S.K., Biotechnol. Rep., 2020, vol. 25, p. e00427.

  33. Dhand, C., Dwivedi, N., Loh, X.J., Ying, A.N.J., Verma, N.K., Beuerman, R.W., and Ramakrishna, S., RSC Adv., 2015, vol. 5, no. 127, p. 105003.

  34. Chandrasekaran, R., Gnanasekar, S., Seetharaman, P., Kepanan, R., Arockiaswamy, W., and Sivaperumal, S., J. Mol. Liq., 2016, vol. 219, p. 232.

    Article  CAS  Google Scholar 

  35. Ingale, A.G. and Chaudhari A.N., J. Nanomed. Nanotechnol., 2013, vol. 4, no. 2, p. 1000165.

  36. Dusan, J., Upsala J. Med. Sci., 2016, vol. 121, no. 3, p. 159.

    Article  Google Scholar 

  37. Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., and Salamat, M.K.F., Infect. Drug Resist., 2018, vol. 11, p. 1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khelissa, S.O., Abdallah, M., Jama, C., Faille, C., and Chihib, N.E., J. Mater. Environ. Sci., 2017, vol. 8, no. 9, p. 3326.

    CAS  Google Scholar 

  39. Chiș, A.A., Rus, L.L., Morgovan, C., Arseniu, A.M., Frum, A., Vonica-Țincu, A.L., Gligor, F.G., Mureșan, M.L., and Dobrea, C.M., Biomedicines, 2022, vol. 10, no. 5, p. 1121.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karli, G., Adv. Ther., 2018, vol. 1, no. 3, p. 1700033.

  41. Donlan, R.M., and Costerton, J.W., Clin. Microbiol. Rev., 2002, vol. 15, p. 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chávez de Paz, L.E., Resin, A., Howard, K.A., Sutherland, D.S., and Wejse, P.L., Appl. Environ. Microbiol., 2011, vol. 77, p. 3892.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Flemming, H.-C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, p. 623.

    Article  CAS  PubMed  Google Scholar 

  44. Pintucci, J.P., Corno, S., and Garotta, M., Eur. Rev. Med. Pharmacol. Sci., 2010, vol. 14, p. 683.

    CAS  PubMed  Google Scholar 

  45. Chen, C.-P., Chen, C.-T., and Tsai, T., Photochem. Photobiol., 2012, vol. 88, p. 570.

    Article  CAS  PubMed  Google Scholar 

  46. Donlan, R.M., Emerg. Infect. Dis., 2001, vol. 7, p. 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewis, K., Antimicrob. Agents Chemother., 2001, vol. 45, p. 999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spoering, A.L. and Lewis, K., J. Bacteriol., 2001, vol. 183, p. 6746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taheri, S., Baier, G., Majewski, P., Barton, M., Förch, R., Landfester, K., and Vasilev, K., Nanotechnology, 2014, vol. 25, p. 305102.

  50. Shrestha, A., Hamblin, M.R., and Kishen, A., Nanomed. Nanotechnol. Biol. Med., 2014, vol. 10, p. 491.

    Article  CAS  Google Scholar 

  51. Taylor, E.N., Kummer, K.M., Durmus, N.G., Leuba, K., Tarquinio, K.M., and Webster, T.J., Small, 2012, vol. 8, p. 3016.

    Article  CAS  PubMed  Google Scholar 

  52. Ramasamy, M., Lee, J.-H., and Lee, J., J. Biomater. Appl., 2016, vol. 31, p. 366.

    Article  CAS  PubMed  Google Scholar 

  53. Ventola, C.L., Pharm. Ther., 2005, vol. 40, p. 525.

    Google Scholar 

  54. Hu, L., The use of nanoparticles to prevent and eliminate bacterial biofilms, in Antimicrobial Research Novel Bioknowledge and Educational Programs, Badajoz: Formatex, 2017, p. 344.

    Google Scholar 

  55. Vidic, J., Stankic, S., Haque, F., Ciric, D., Le Goffic, R., Vidy, A., Jupille, J., and Delmas, B., J. Nanopart. Res., 2013, vol. 15, p. 1595.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sharma, N., Jandaik, S., Kumar, S., Chitkara, M., and Sandhu, I.S., J. Exp. Nanosci., 2016, vol. 11, p. 54.

    Article  CAS  Google Scholar 

  57. Rao, Y., Wang, W., Tan, F., Cai, Y., Lu, J., and Qiao, X., Appl. Surf. Sci., 2013, vol. 284, p. 726.

    Article  CAS  Google Scholar 

  58. Stankic, S., Suman, S., Haque, F., and Vidic, J., J. Nanobiotechnol., 2016, vol. 14, p. 73.

    Article  Google Scholar 

  59. Huh, A.J. and Kwon, Y.J., J. Control. Release, 2011, vol. 156, p. 128.

    Article  CAS  PubMed  Google Scholar 

  60. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, p. 797.

    Article  CAS  PubMed  Google Scholar 

  61. Liang, Y., Hilal, N., Langston, P., and Starov, V., Adv. Colloid Interface Sci., 2007, vols. 134–135, p. 151.

    Article  PubMed  Google Scholar 

  62. Ikuma, K., Madden, A.S., Decho, A.W., and Lau, B.L.T., Environ. Sci.: Nano, 2014, vol. 1, p. 117.

    CAS  Google Scholar 

  63. Sahle-Demessie, E., and Tadesse, H., Surf. Sci., 2011, vol. 605, p. 1177.

    Article  CAS  Google Scholar 

  64. Tong, M., Ding, J., Shen, Y., and Zhu, P., Water Res., 2010, vol. 44, p. 1094.

    Article  CAS  PubMed  Google Scholar 

  65. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., de Aberasturi, D.J., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M., Trends Biotechnol., 2012, vol. 30, p. 499.

    Article  CAS  PubMed  Google Scholar 

  66. Sutherland, I.W., Microbiology, 2001, vol. 147, p. 3.

    Article  CAS  PubMed  Google Scholar 

  67. Esparza-Soto, M. and Westerhoff, P., Water Res., 2003, vol. 37, p. 2301.

    Article  CAS  PubMed  Google Scholar 

  68. Selvakumar, R., Aravindh, S., Ashok, A.M., and Balachandran, Y.L., J. Exp. Nanosci., 2014, vol. 9, p. 1075.

    Article  CAS  Google Scholar 

  69. Lacroix-Gueu, P., Briandet, R., Lévêque-Fort, S., Bellon-Fontaine, M.N., and Fontaine-Aupart, M.P., C. R. Biol., 2005, vol. 328, no. 12, p.1065.

    Article  CAS  PubMed  Google Scholar 

  70. Stewart, P.S., J. Bacteriol., 2003, vol. 185, p. 1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peulen, T.-O., and Wilkinson, K.J., Environ. Sci. Technol., 2011, vol. 45, p. 3367.

    Article  CAS  PubMed  Google Scholar 

  72. Habimana, O., Steenkeste, K., Fontaine-Aupart, M.-P., Bellon-Fontaine, M.-N., Kulakauskas, S., and Briandet, R., Appl. Environ. Microbiol., 2011, vol. 77, p. 367.

    Article  CAS  PubMed  Google Scholar 

  73. Ikuma, K., Decho, A.W., and Lau, B.L.T., Front. Microbiol., 2015, vol. 6, p. 591.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Taylor, E.N., and Webster, T.J., Int. J. Nanomed., 2009, vol. 4, p. 145.

    Article  CAS  Google Scholar 

  75. Koper, O.B., Klabunde, J.S., Marchin, G.L., Klabunde, K.J., Stoimenov, P., and Bohra, L., Curr. Microbiol., 2002, vol. 44, p. 49. https://doi.org/10.1007/s00284-001-0073-x

    Article  CAS  PubMed  Google Scholar 

  76. Koper, O.B., Lagadic, I., Volodin, A., and Klabunde, K.J., Chem. Mater., 1997, vol. 9, no. 11, p. 2468.

    Article  CAS  Google Scholar 

  77. Gurunathan, S., Han, J.W., Dayem, A.A., Epakayala, V., and Kim, J.-H., Int. J. Nanomed., 2012, vol. 7, p. 5901.

    Article  CAS  Google Scholar 

  78. Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., Webster, T.J., Int. J. Nanomed., 2010, vol. 5, p. 277.

    CAS  Google Scholar 

  79. Kim, J.H., Cho, H., Ryu, S.E., and Choi, M.U., Arch. Biochem. Biophys., 2000, vol. 382, no. 1, p. 72.

  80. Gunawan, C., Teoh, W.Y., Marquis, C.P., and Amal, R., ACS Nano, 2011, vol. 5, no. 9, p. 7214.

    Article  CAS  PubMed  Google Scholar 

  81. Szabó, T., Németh, J., and Dékány, I., Colloids Surf., A, 2003, vol. 230, no. 1, p. 23.

    Article  Google Scholar 

  82. Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., Sawaki, T., Hakoda, A., Kawada, E., Kokugan, T., and Shimizu, M., J. Compos. Mater., 2009, vol. 43, no. 8, p. 897.

    Article  Google Scholar 

  83. Sawai J., and Yoshikawa T., J. Appl. Microbiol., 2004, vol. 96, no. 4, p. 803.

    Article  CAS  PubMed  Google Scholar 

  84. Padmavathy, N. and Vijayaraghavan, R., Sci. Technol. Adv. Mater., 2008, vol. 9, no. 3, p. 035004.

  85. Nikitina, A.A., Ulasevich, S.A., Kassirov, I.S., Bryushkova, E.A., Koshel, E.I., and Skorb, E.V., Bioconjug. Chem., 2018, vol. 29, no. 11, p. 3793.

    Article  CAS  PubMed  Google Scholar 

  86. Chong, M.N., Jin, B., Chow, C.W.K., and Saint, C., Water Res., 2010, vol. 44, no. 10, p. 2997.

    Article  CAS  PubMed  Google Scholar 

  87. Chorianopoulos, N.G., Tsoukleris, D.S., Panagou, E.Z., Falaras, P., and Nychas, G.-J.E., Food Microbiol., 2011, vol. 28, no. 1, p. 164.

    Article  CAS  PubMed  Google Scholar 

  88. Kadiyala, U., Turali-Emre, E.S., Bahng, J.H., Kotov, N.A., and Scott Vaneps, J., Nanoscale, 2018, vol. 10, no. 10, p. 4927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., and Mohamad, D., Nanomicro Lett., 2015, vol. 7, no. 3, p. 219.

    CAS  PubMed  Google Scholar 

  90. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., and Galdiero, M., J. Inorg. Organomet. Polym. Mater., 2020, vol. 30, no. 12, p. 4811.

    Article  Google Scholar 

  91. Yoon, K.Y., Hoon Byeon, J., Park, J.H., and Hwang, J., Sci. Total Environ., 2007, vol. 373, nos. 2–3, p. 572.

    Article  CAS  PubMed  Google Scholar 

  92. Yang, Z., and Xie, C., Colloids Surf., B, 2006, vol. 47, no. 2, p. 140.

    Article  CAS  Google Scholar 

  93. Neumann, M., and Leimkühler, S., FEBS J., 2008, vol. 275, no. 22, p. 5678.

    Article  CAS  PubMed  Google Scholar 

  94. Macomber, L., and Imlay, J.A., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 20, p. 8344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, G., Yang, J., Li, T., Zhao, J., Sun, S., Li, X., Lin, C., Li, J., Zhou, H., and Lyu, J., Appl. Environ. Microbiol., 2017, vol. 83, no. 16, p. e00867.

  96. Lee, N.Y., Ko, W.C., and Hsueh, P.R., Front. Pharmacol., 2019, vol. 10, p. 1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D.A., Hoffmann, H.J., and Autrup, H., Toxicol. Lett., 2009, vol. 190, no. 2, p. 156.

    Article  CAS  PubMed  Google Scholar 

  98. Li, H., Chen, Q., Zhao, J., and Urmila, K., Sci. Rep., 2015, vol. 5, no. 1, p. 11033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, W., Thamphiwatana, S., Angsantikul, P., and Zhang, L., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, vol. 6, no. 6, p. 532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Malka, E., Perelshtein, I., Lipovsky, A., Shalom, Y., Naparstek, L., Perkas, N., Patick, T., Lubart, R., Nitzan, Y., Banin, E., and Gedanken, A., Small, 2013, vol. 9, no. 23, p. 4069.

    Article  CAS  PubMed  Google Scholar 

  101. Li, Y., Zhang, W., Niu, J., and Chen, Y., ACS Nano, 2012, vol. 6, no. 6, p. 5164.

    Article  CAS  PubMed  Google Scholar 

  102. Peng, Z., Ni, J., Zheng, K., Shen, Y., Wang, X., He, G., Jin, S., and Tang, T., Int. J. Nanomed., 2013, vol. 8, p. 3093.

    Google Scholar 

  103. Cheloni, G., Marti, E., and Slaveykova, V.I., Aquat. Toxicol., 2016, vol. 170, p. 120.

    Article  CAS  PubMed  Google Scholar 

  104. Pramanik, A., Laha, D. Bhattacharya, D., Pramanik, P., and Karmakar, P., Colloids Surf., B, 2012, vol. 96, p. 50.

    Article  CAS  Google Scholar 

  105. Padmavathy, N. and Vijayaraghavan, R., J. Biomed. Nanotechnol., 2011, vol. 7, no. 6, p. 813.

    Article  CAS  PubMed  Google Scholar 

  106. Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q., and Huang, M., Biomed. Mater., 2014, vol. 10, no. 1, p. 015001.

  107. Hussein-Al-Ali, S.H., El Zowalaty, M.E., Hussein, M.Z., Geilich, B.M., and Webster, T.J., Int. J. Nanomed., 2014, vol. 9, p. 3801.

    Article  CAS  Google Scholar 

  108. Leung, Y.H., Ng, A.M., Xu, X., Shen, Z., Gethings, L.A., Wong, M.T., Chan, C.M., Guo, M.Y., Ng, Y.H., Djurišić, A.B., and Lee, P.K., Small., 2014, vol. 10, p. 1171.

    Article  CAS  PubMed  Google Scholar 

  109. Hyldgaard, M., Mygind, T., Vad, B.S., Stenvang, M., Otzen, D.E., and Meyer, R.L., Appl. Environ. Microbiol., 2014, vol. 80, no. 24, p. 7758.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sarwar, A., Katas, H., Samsudin, S.N., and Zin, N.M., PLoS One, 2015, vol. 10, no. 4, p. e0123084.

  111. Zhang, S., Gao, H., and Bao, G., ACS Nano, 2015, vol. 9, no. 9, p. 8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Esfandiari, N., Simchi, A., and Bagheri, R., J. Biomed. Mater. Res., Part A, 2014, vol. 102, p. 8, p. 2625.

  113. Pan, X., Wang, Y., Chen, Z., Pan, D., Cheng, Y., Liu, Z., Lin, Z., and Guan, X., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 3, p. 1137.

    Article  CAS  PubMed  Google Scholar 

  114. Hong, X., Wen, J., Xiong, X., and Hu, Y., Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 5, p. 4489.

    Article  CAS  PubMed  Google Scholar 

  115. Ben-Sasson, M., Zodrow, K.R., Genggeng, Q., Kang, Y., Giannelis, E.P., and Elimelech, M., Environ. Sci. Technol., 2014, vol. 48, no. 1, p. 384.

    Article  CAS  PubMed  Google Scholar 

  116. Rajakumar, G., Rahuman, A.A., Roopan, S.M., Khanna, V.G., Elango, G., Kamaraj, C., Zahir, A.A., and Velayutham, K.,Spectrochim. Acta, Part A, 2012, vol. 91, p. 23.

    Article  CAS  Google Scholar 

  117. Khan, S.A., Shahid, S., Shahid, B., Fatima, U., and Abbasi, S.A., Biomolecules, 2020, vol. 10, no. 5, p. 785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shahid, S.A., Anwar, F., Shahid, M., Majeed, N., Azam, A., Bashir, M., Amin, M., Mahmood, Z., and Shakir, I., J. Nanomater., 2015, vol. 16, no. 1, p. 111.

    Google Scholar 

  119. Li, Y., Liu, J., Wang, L., Zhang, J., Wang, Z., Gao, Z., Zhong, Y., and Zhang, D., Proc. 2011 5th Int. Conf. on Bioinformatics and Biomedical Engineering.

  120. Popescu, T., Matei, C.O., Vlaicu, I.D., Tivig, I., Kuncser, A.C., Stefan, M., Ghica, D., Miclea, L.C., Savopol, T., Culita, D.C., and Moisescu, M.G., Sci. Rep., 2020, vol. 10, no. 1, p. 18062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haneefa, M.M., Asian J. Pharm., 2017, vol. 11, no. 1. https://doi.org/10.22377/ajp.v11i01.1045

  122. Hoseinpour, V. and Ghaemi, N., Mater. Res. Express, 2018, vol. 5, no. 8, p. 085012.

  123. Azhir, E., Etefagh, R., Mashreghi, M., and Pordeli, P., Phys. Chem. Res., 2015, vol. 3, no. 3, p. 197.

    CAS  Google Scholar 

  124. Joshi, N.C., Siddiqui, F., Salman, M., and Singh, A., Asian Pac. J. Health Sci., 2020, vol. 7, no. 3, p. 27.

    Google Scholar 

  125. Kumar, G.S., Venkataramana, B., Reddy, S.A., Maseed, H., and Nagireddy, R.R., Adv. Nat. Sci. Nanosci. Nanotechnol., 2020, vol. 11, no. 3, p. 035006.

  126. Arularasu, M.V., Devakumar, J., and Rajendran, T.V., Polyhedron, 2018, vol. 156, p. 279.

    Article  CAS  Google Scholar 

  127. Cherian, E., Arya, R., and Baskar, G., Int. J. Mod. Sci. Technol., 2016, vol. 1, no. 1, p. 17.

    Google Scholar 

  128. Lopez, A.C., Figueroa, E.V., Alvarez M.B.L., Pereira, C.D., Garay, H., Barbosa, J.A., Falcão, R., Hernández, L.J., Hernández, O.E., Reguera, E., and Franco, O.L., Int. J. Nanomed., 2016, vol. 11, p. 3849.

    Article  Google Scholar 

  129. Saravanan, R., Khan, M.M., Gupta, V.K., Mosquera, E., Gracia, F., Narayanan, V. and Stephen, A.J.R.A., RSC Adv., 2015, vol. 5, no. 44, p. 34645.

    Article  CAS  Google Scholar 

  130. Dodd, M.C., Kohler, H.P.E. and Von Gunten, U., Environ. Sci. Technol., 2009, vol. 43, no. p. 2498.

  131. Santoshi, V., Banu, A.S., and Kurian, G.A., Int. J. Pharm. Pharm. Sci., 2015, vol. 7, no. 1, p. 75.

    CAS  Google Scholar 

  132. Subhashini, G., Ruban, P., and Daniel, T., Int. J. Adv. Sci. Res. Manage., 2018, vol. 3, p. 184.

    Google Scholar 

  133. Vitta, Y., Figueroa, M., Calderon, M., and Ciangherotti, C., Mater. Sci. Technol., 2020, vol. 3, p. 97.

    CAS  Google Scholar 

  134. Ansari, S.A., Oves, M., Satar, R., Khan, A., Ahmad, S.I., Jafri, M.A., Zaidi, S.K., and Alqahtani, M.H., Pol. J. Chem. Technol., 2017, vol. 19, no. 4, p. 110.

    Article  CAS  Google Scholar 

  135. Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., and Margel, S., Global J. Bio-Sci. Biotechnol., 2015, vol. 4, p. 335.

    Google Scholar 

  136. Avval, Z.M., Malekpour, L., Raeisi, F., Babapoor, A., Mousavi, S.M., Hashemi, S.A., and Salari, M., Drug Metab. Rev., 2020, vol. 52, no. 1, p. 157.

    Article  PubMed  Google Scholar 

  137. Saqib, S., Munis, M.F.H., Zaman, W., Ullah, F., Shah, S.N., Ayaz, A., Farooq, M., and Bahadur, S., Microsc. Res. Tech., 2019, vol. 82, no. 4, p. 415.

    Article  CAS  PubMed  Google Scholar 

  138. Pallela, P.N.V.K., Ummey, S., Ruddaraju, L.K., Gadi, S., Cherukuri, C.S., Barla, S., and Pammi, S.V.N., Heliyon, 2019, vol. 5, no. 11, p.e02765.

  139. Da’na, E., Taha, A., and Afkar, E., Appl. Sci., 2018, vol. 8, no. 10, p. 1922.

    Article  Google Scholar 

  140. Long, M., Zhang, Y., Shu, Z., Tang, A., Ouyang, J., and Yang, H., Chem. Commun., 2017, vol. 53, no. 46, p. 6255.

    Article  CAS  Google Scholar 

  141. Neupane, B.P., Chaudhary, D., Paudel, S., Timsina, S., Chapagain, B., Jamarkattel, N., and Tiwari, B.R., Int. J. Nanomed., 2019, vol. 14, p. 3533.

    Article  CAS  Google Scholar 

  142. Arsalan, N., Hassan Kashi, E., Hasan, A., Edalat Doost, M., Rasti, B., Ahamad Paray, B., Zahed Nakhjiri, M., Sari, S., Sharifi, M., Shahpasand, K., and Akhtari, K., Int. J. Nanomed., 2020, vol. 15, p. 4607.

    Article  Google Scholar 

  143. Sharma, R.P., Raut, S.D., Mulani, R.M., Kadam, A.S., and Mane, R.S., Int. Nano Lett., 2019, vol. 9, no. 2, p. 141.

    Article  CAS  Google Scholar 

  144. Chandekar, K.V., Shkir, M., Alshahrani, T., Ibrahim, E.H., Kilany, M., Ahmad, Z., Manthrammel, M.A., AlFaify, S., Kateb, B., and Kaushik, A., Mater. Sci. Eng., C, 2021, vol. 122, p. 111898.

  145. Sulaiman, J.M., Hamdoon, S.M., and Abdulrahman, G.Y., in Materials Science Forum, 2021б, vol. 1021, p. 150.

    Article  Google Scholar 

  146. Raza, M.A., Kanwal, Z., Riaz, S., and Naseem, S., Proc. 2016 World Congress on Advances in Civil, Enviromental, and Materials Research (ACEM16), Jeju Island, Korea, 2016, vol. 28.

  147. Safaei M., Taran, M., Imani, M.M., Moradpoor, H., Golshah, A., and P. Upadhyay, Curr. Issues Pharm. Med. Sci., 2019, vol. 32, p. 99.

    Article  CAS  Google Scholar 

  148. Christy, A.J., Kevin, A., Nehru, L.C. and Umadevi, M., Int. J. Chemtech Res., 2015, vol. 7, p. 1191.

    Google Scholar 

  149. Anwar A., Numan, A., Siddiqui, R., Khalid, M., and Khan, N.A., Parasit. Vectors, 2019, vol. 12, no. 1, p. 280.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P. and Shafipour Yordshahi, A., Appl. Nanosci., 2020, vol. 10, no. 2, p. 465.

    Article  CAS  Google Scholar 

  151. Maksoud, M.A., El-Sayyad, G.S., Ashour, A.H., El-Batal, A.I., Elsayed, M.A., Gobara, M., El-Khawaga, A.M., Abdel-Khalek, E.K., and El-Okr, M.M., Microb. Pathog., 2019, vol. 127, p. 144.

    Article  CAS  PubMed  Google Scholar 

  152. Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., and Memic, A., Int. J. Nanomed., 2012, vol. 7, p. 3527.

    Article  CAS  Google Scholar 

  153. Manjari, G., Saran, S., Arun, T., Rao, A.V.B., and Devipriya, S.P., J. Saudi Chem. Soc., 2017, vol. 21, no. 5, p. 610.

    Article  CAS  Google Scholar 

  154. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., and Adibkia, K., Mater. Sci. Eng., C, 2014, vol. 44, p. 278.

    Article  CAS  Google Scholar 

  155. Hemalatha, S. and Makeswari, M., Rasayan J. Chem., 2017, vol. 10, p. 838.

    CAS  Google Scholar 

  156. Amiri, M., Etemadifar, Z., Daneshkazemi, A., and Nateghi, M., J. Dent. Biomater., 2017, vol. 4, no. 1, p. 347.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bogdanović, U., Lazić, V., Vodnik, V., Budimir, M., Marković, Z., and Dimitrijević, S., Mater. Lett., 2014, vol. 128, p. 75.

    Article  Google Scholar 

  158. Giannousi, K., Pantazaki, A., and Dendrinou-Samara, C., in Nanostructures for Antimicrobial Therapy, Amsterdam: Elsevier, 2017, p. 515.

    Google Scholar 

  159. Asamoah, R.B., Yaya, A., Mensah, B., Nbalayim, P., Apalangya, V., Bensah, Y.D., Damoah, L.N.W., Agyei-Tuffour, B., Dodoo-Arhin, D., and Annan, E., Res. Mater., 2020, vol. 7, p. 100099.

  160. Meraat, R., Ziabari, A.A., Issazadeh, K., Shadan, N., and Jalali, K.M., Acta Metall. Sin. (Engl. Lett.), 2016, vol. 29, no. 7, p. 601.

  161. Farzana, R., Iqra, P., Shafaq, F., Sumaira, S., Zakia, K., Hunaiza, T., and Husna, M., Arch. Clin. Microbiol., 2017, vol. 8, p. 57.

    Google Scholar 

  162. Azizi-Lalabadi, M., Ehsani, A., Divband, B., and Alizadeh-Sani, M., Sci. Rep., 2019, vol. 9, no. 1, p. 17439.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Basnet, P., Chanu, T.I., Samanta, D., and Chatterjee, S., J. Photochem. Photobiol., B, 2018, vol. 183, p. 201.

    Article  CAS  PubMed  Google Scholar 

  164. Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O., and Lu, M.C., Sustainable Environ. Res., 2018, vol. 28, p. 47.

    CAS  Google Scholar 

  165. Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D., and Bolzinger, M.A., Colloids Surf., A, 2014, vol. 457, p. 263.

    Article  CAS  Google Scholar 

  166. Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., Shah, N.A., and Tiwari, M., Front. Microbiol., 2018, vol. 9, p. 1218.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Akbarzadeh, F., Motaghi, M., Chauhan, N.P.S., and Sargazi, G., Heliyon, 2020, vol. 6, no.1, p.e03231.

  168. Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Applications, London: World Scientific, 2004.

    Book  Google Scholar 

  169. Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., and Lisichkin, G.V., Russ. Chem. Rev., 2008, vol. 77, no. 3, p. 233.

    Article  CAS  Google Scholar 

  170. Giri, N., Natarajan, R.K., Gunasekaran, S., and Shreemathi, S., Arch. Appl. Sci. Res., 2011, vol. 3, p. 624.

    CAS  Google Scholar 

  171. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S, Korean J. Microbiol. Biotechnol., 2011, vol. 39, no. 1, p. 77.

    CAS  Google Scholar 

  172. Guzman, M., Dille, J., and Godet, S., Nanomed.: Nanotechnol., Biol. Med., 2012, vol. 8, no. 1, p. 37.

    CAS  Google Scholar 

  173. Ishida, K., Cipriano, T.F., Rocha, G.M., Weissmüller, G., Gomes, F., Miranda, K., and Rozental, S., Mem. Inst. Oswaldo Cruz., 2013, vol. 109, p. 220.

    Article  PubMed Central  Google Scholar 

  174. Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., and Yacaman, M.J., J. Nanobiotechnol., 2005, vol. 3, p. 6.

    Article  Google Scholar 

  175. Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K., and Che, C.M., Antivir. Ther., 2008, vol. 13, p. 253.

    Article  CAS  PubMed  Google Scholar 

  176. Xiang, D., Chen, Q., Pang, L., and Zheng, C., J. Virol. Methods, 2011, vol. 178, p. 137.

    Article  CAS  PubMed  Google Scholar 

  177. Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., and Sharghi, H., J. Nanomater., 2015, vol. 16, no. 1, p. 53.

    Google Scholar 

  178. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K.H., Chiu, J.F., and Che, C.M., J. Biol. Inorg. Chem., 2007, vol. 12, no. 4, p. 527.

    Article  CAS  PubMed  Google Scholar 

  179. Espinosa-Cristóbal, L.F., Martínez-Castañón, G.A., Martínez-Martínez, R.E., Loyola-Rodríguez, J.P., Patiño-Marín, N., Reyes-Macías, J.F., and Ruiz, F., Mater. Lett., 2009, vol. 63, no. 29, p. 2603.

    Article  Google Scholar 

  180. Ivask, A., Kurvet, I., Kasemets, K., Blinova, I., Arouja, V., Supi, S., Vija, H., Käkinen, A., Titma, T., Heinlaan, M., Visnapuu, M., Koller, D., Kisand, V., and Kahru, A., PLoS One, 2014, vol. 9, no. 7, p. e102108.

  181. Lu, Z., Rong, K., Li, J., Yang, H., and Chen, R., J. Mater. Sci. Mater. Med., 2013, vol. 24, no. 6, p. 1465.

    Article  CAS  PubMed  Google Scholar 

  182. Lopez-Abarrategui, C., Figueroa-Espi, V., Lugo-Alvarez, M.B., Pereira, C.D., Garay, H., Barbosa, J.A., Falcão, R., Jiménez-Hernández, L., Estévez-Hernández, O., Reguera, E., and Franco, O.L., Int. J. Nanomed., 2016, vol. 11, p. 3849.

    Article  CAS  Google Scholar 

  183. Saravanan, R., Khan, M.M., Gupta, V.K., Mosquera, E., Gracia, F., Narayanan, V., and Stephen, A.J.J.O.C., J. Colloid Interface Sci., 2015, vol. 452, p. 126.

    Article  CAS  PubMed  Google Scholar 

  184. Vitta, Y., Figueroa, M., Calderon, M., and Ciangherotti, C., Mater. Sci. Energy Technol., 2020, vol. 3, p. 97

    CAS  Google Scholar 

  185. Tanase, C., Berta, L., Coman, N.A., Roșca, I., Man, A., Toma, F., Mocan, A., Nicolescu, A., Jakab-Farkas, L., Biró, D., and Mare, A., Nanomaterials, 2019, vol. 9, no. 11, p. 1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Figueiredo, E.P., Ribeiro, J.M., Nishio, E.K., Scandorieiro, S., Costa, A.F., Cardozo, V.F., Oliveira, A.G.D., Durán, N., Panagio, L.A., Kobayashi, R.K.T., and Nakazato, G., Int. J. Nanomed., 2019, vol. 14, p. 7975.

    Article  CAS  Google Scholar 

  187. Hossain, M.M., Polash, S.A., Takikawa, M., Shubhra, R.D., Saha, T., Islam, Z., Hossain, S., Hasan, M.A., Takeoka, S., and Sarker, S.R., Front. Bioeng. Biotechnol., 2019, vol. 7, p. 239.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wypij, M., Golinska, P., Dahm, H., and Rai, M., IET Nanobiotechnol., 2017, vol. 11, no. 3, p. 336.

    Article  PubMed  Google Scholar 

  189. Oves, M., Rauf, M.A., Hussain, A., Qari, A.H., Parwaz Khan, A.A., Muhammad, P., Rehman, M.T., Alajmi, M.F., and Ismail, I.I.M., Front. Pharmacol., 2019, vol. 10, p. 801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dong, Y., Zhu, H., Shen, Y., Zhang, W., and Zhang, L., PLoS One, 2019, vol. 14, no. 9, p. e0222322.

  191. Gondil, V.S., Kalaiyarasan, T., Bharti, V.K., and Chhibber, S., Biotech, 2019, vol. 9, no. 11, p. 402.

    Google Scholar 

  192. Moniri Javadhesari, S., Alipour, S., Mohammadnejad, S., and Akbarpour, M.R., Mater. Sci. Eng., C, 2019, vol. 105, p. 110011.

  193. Nur, S., Shameli, K., Mei-Theng, W.M., Teow, S.-Y., Chew, J., and Ismail, N.A., J. Mol. Struct., 2019, vol. 1189, p. 57.

    Article  Google Scholar 

  194. Jayabalan, J., Mani, G., Krishnan, N., Pernabas, J., Milton, J., and Tae, H., Biocatal. Agric. Biotechnol., 2019, vol. 21, p. 101327.

  195. Agarwal, H., Nakara, A., Menon, S., and Shanmugam, V., J. Drug Delivery Sci. Technol., 2019, vol. 53, p. 1773.

    Article  Google Scholar 

  196. Elumalai, K. and Velmurugan, S., Appl. Surf. Sci., 2015, vol. 345, p. 329.

    Article  CAS  Google Scholar 

  197. Chandra, H., Patel, D., Kumari, P., Jangwan, J.S., and Yadav, S., Mater. Sci. Eng., C, 2019, vol. 102, p. 212.

    Article  CAS  Google Scholar 

  198. Huang, C.C., Aronstam, R.S., Chen, D.R. and Huang, Y.W., Toxicol. In Vitro, 2010, vol. 24, no. 1, p. 45.

    Article  CAS  PubMed  Google Scholar 

  199. Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J., Environ. Sci. Technol., 2006, vol. 40, no. 14, p. 4374.

    Article  CAS  PubMed  Google Scholar 

  200. Guan R, Kang T, Lu F, Zhang Z, Shen H, and Liu, M., Nanoscale Res. Lett., 2012, vol. 7, no. 1, p. 602.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Osman, I.F., Baumgartner, A., Cemeli, E., Fletcher, J.N., and Anderson, D., Nanomedicine, 2010, vol. 5, no. 8, p. 1193.

    Article  CAS  PubMed  Google Scholar 

  202. Sharma, V., Singh, P., Pandey, A.K., and Dhawan, A., Mutat. Res., 2012, vol. 745, nos. 1–2, p. 84.

    Article  CAS  PubMed  Google Scholar 

  203. Naqvi, S., Samim, M., Abdin, M.Z., Ahmad, F.J., Maitra, A.N., Dinda, A.K., and Prashant, C.K., Int. J. Nanomed., 2010, vol. 5, p. 983.

    Article  CAS  Google Scholar 

  204. Albukhaty, S., Naderi-Manesh, H., and Tiraihi, T., Iran. Biomed. J., 2013, vol. 17, no. 2, p. 71.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, G., Gao, J., Ai, H., and Chen, X., Small, 2013, vol. 9, nos. 9–10, p. 1533.

    Article  CAS  PubMed  Google Scholar 

  206. Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.L., and Chai, Z.F., Toxicology, 2008, vol. 247, nos. 2–3, p. 102.

    Article  CAS  PubMed  Google Scholar 

  207. Pawelczyk, E., Arbab, A.S., Chaudhry, A., Balakumaran, A., Robey, P.G., and Frank, J.A., Stem Cells, 2008, vol. 26, no. 5, p. 1366.

    Article  CAS  PubMed  Google Scholar 

  208. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., and Xi, T., J. Nanosci. Nanotechnol., 2009, vol. 9, no. 8, p. 4924.

    Article  CAS  PubMed  Google Scholar 

  209. Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., and Schlager, J.J., Toxicol. In Vitro, 2005, vol. 19, no. 7, p. 975.

    Article  CAS  PubMed  Google Scholar 

  210. AshaRani, P.V., Low Kah Mun, G., Hande, M.P., and Valiyaveettil, S., Arch. Toxicol., 2011, vol. 85, no. 7, p. 743.

    Google Scholar 

  211. Haase, A., Tentschert, J., Jungnickel, H., Graf, P., Mantion, A., Draude, F., Plendl, J., Goetz, M.E., Galla, S., Mašić, A., and Thünemann, A.F., J. Phys.: Conf. Ser., 2011, vol. 304, p. 012030.

  212. Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B., and Donaldson, K., Occup. Environ. Med., 2007, vol. 64, no. 9, p. 609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Papageorgiou, I., Brown, C., Schins, R., Singh, S., Newson, R., Davis, S., Fisher, J., Ingham, E., and Case, C.P., Biomaterials, 2007, vol. 28, no. 19, p. 2946.

    Article  CAS  PubMed  Google Scholar 

  214. Ponti, J., Sabbioni, E., Munaro, B., Broggi, F., Marmorato, P., Franchini, F., Colognato, R., and Rossi, F., Mutagenesis, 2009, vol. 24, no. 5, p. 439.

  215. Peters, K., Unger, R.E., Kirkpatrick, C.J., Gatti, A.M., and Monari, E., J. Mater. Sci. Mater. Med., 2004, vol. 15, no. 4, p. 321.

    Article  CAS  PubMed  Google Scholar 

  216. Petrarca, C., Perrone, A., Verna, N., Verginelli, F., Ponti, J., Sabbioni, E., Di Giampaolo, L., Dadorante, V., Schiavone, C., Boscolo, P., and Di Gioacchino, M., Int. J. Immunopathol. Pharmacol., 2006, vol. 19, no. 4 (suppl.), p. 11.

    CAS  PubMed  Google Scholar 

  217. Mo, Y., Mo, Y., Zhu, X., Mo, Y., Zhu, X., Hu, X., Tollerud, D.J., and Zhang, Q., Nanotoxicology, 2008, vol. 2, no. 2, p. 79.

    Article  CAS  Google Scholar 

  218. Papis, E., Gornati, R., Prati, M., Ponti, J., Sabbioni, E., and Bernardini, G., Toxicol. Lett., 2007, vol. 170, no. 3, p. 185.

    Article  CAS  PubMed  Google Scholar 

  219. Colognato, R., Bonelli, A., Ponti, J., Farina, M., Bergamaschi, E., Sabbioni, E., and Migliore, L., Mutagenesis, 2008, vol. 23, no. 5, p. 377.

    Article  CAS  PubMed  Google Scholar 

  220. Choi, J.Y., Lee, S.H., Na, H.B., An, K., Hyeon, T., and Seo, T.S., Bioprocess Biosyst. Eng., 2010, vol. 33, no. 1, p. 21.

    Article  CAS  PubMed  Google Scholar 

  221. Frick, R., Müller-Edenborn, B., Schlicker, A., Rothen-Rutishauser, B., Raemy, D.O., Günther, D., Hattendorf, B., Stark, W., and Beck-Schimmer, B., Toxicol. Lett., 2011, vol. 205, no. 2, p. 163.

    Article  CAS  PubMed  Google Scholar 

  222. O’Neal, S.L. and Zheng, W., Curr. Environ. Health Rep., 2015, vol. 2, no. 3, p. 315.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Kumar Das.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashistha, V.K., Gautam, S., Bala, R. et al. Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents. rev. and adv. in chem. 12, 222–247 (2022). https://doi.org/10.1134/S2634827622600244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622600244

Keywords:

Navigation