Skip to main content
Log in

Factorial-Based Analysis of the Hydrothermal Transformations of Glucose

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract—

Hydrothermal processing of glucose affording carbonaceous nanoparticles has been analyzed using the factorial design approach. The probed variables (pH and concentration of glucose in the solution, temperature and duration of the treatment) as well as some of their interactions have significantly affected the process outcome. The reactor volume has not significantly influenced the synthesis. The highest yield of the carbonaceous nanoparticles has been observed at low concentration of the precursor, high temperature and long duration of the process, irrespectively of the starting pH level. Longer treatment has also favored the formation of the insoluble product, especially in neutral and alkaline solutions. It has been concluded that a single replication of the factorial design is enough for reliable elucidation of the active factors, whereas their quantitative analysis should be preferably performed with at least two replicates of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Papaioannou, N., Marinovic, A., Yoshizawa, N., Goode, A.E., Fay, M., Khlobystov, A., and Titirici, M.-M., and Sapelkin, A., Sci. Rep., 2018, vol. 8, p. 6559.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sharma, A. and Das, J., J. Nanobiotechnol., 2019, vol. 17, p. 92.

    Article  Google Scholar 

  3. Li, S., Liang, F., Wang, J., Zhang, H., and Zhang, S., Adv. Powder Technol., 2017, vol. 28, no. 10, p. 2648.

    Article  CAS  Google Scholar 

  4. Nicolae, S.A., Au, H., Modugno, P., Luo, H., Szego, A.E., Qiao, M., Li, L., Yin, W., Heeres, H.J., Berge, N., and Titirici, M.-M., Green Chem., 2020, vol. 22, p. 4747.

    Article  CAS  Google Scholar 

  5. Zha, G. and Yu, L., Fullerenes, Nanotubes, Carbon Nanostruct., 2016, vol. 24, no. 2, p. 139.

    Article  CAS  Google Scholar 

  6. He, Q., Yu, Y., Wang, J., Sou, X., and Li, Y., Ind. Eng. Chem. Res., 2021, vol. 60, no. 12, p. 4552.

    Article  CAS  Google Scholar 

  7. Poerschmann, J., Weiner, B., Koehler, R., and Kopinke, F.-D., ACS Sustainable Chem. Eng., 2017, vol. 5, no. 8, p. 6420.

    Article  CAS  Google Scholar 

  8. Cantero, D.A., Alvarez, A., Bermejo, M.D., and Cocero, M.J., J. Supercrit. Fluids, 2015, vol. 98, p. 204.

    Article  CAS  Google Scholar 

  9. Kimura, H., Nakahara, M., and Matubayasi, N., J. Phys. Chem. A, 2011, vol. 115, no. 48, p. 14013.

    Article  CAS  PubMed  Google Scholar 

  10. Yao, C., Shin, Y., Wang, L.-Q., Windisch, C.F., Samuels, W.D., Arey, B.W., Wang, C., Risen, W.M., and Exarhos, G.J., J. Phys. Chem. C, 2007, vol. 111, no. 42, p. 15141.

    Article  CAS  Google Scholar 

  11. Li, M., Li. W., and Liu, S., Carbohydr. Res., 2011, vol. 346, no. 8, p. 999.

    Article  CAS  PubMed  Google Scholar 

  12. Romero-Anaya, A.J., Ouzzine, M., Lillo-Ródenas, M.A., and Linares-Solano, A., Carbon, 2014, vol. 68, p. 296.

    Article  CAS  Google Scholar 

  13. Gan, Z., Wu, X., and Hao, Y., CrystEngComm, 2014, vol. 16, p. 4981.

    Article  CAS  Google Scholar 

  14. He, X., Li, H., Liu, Y., Huang, H., Kang, Z., and Lee, S.-T., Colloids Surf., B, 2011, vol. 87, no. 2, p. 326.

    Article  CAS  Google Scholar 

  15. Singh, B., Kumar, R., and Ahuja, N., Crit. Rev. Ther. Drug Carrier Syst., 2005, vol. 22, no. 1, p. 27.

    Article  CAS  PubMed  Google Scholar 

  16. Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 2019.

    Google Scholar 

  17. Collins, L.M., Dziak, J.J., and Li, R., Psychol. Methods, 2009, vol. 14, no. 3, p. 202.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gomes, M.F., Gomes, Y.F., Lopes-Moriyama, A., de Barros Neto, E.L., and de Souza, C.P., Biomass Convers. Biorefin., 2019, vol. 9, p. 689.

    Article  CAS  Google Scholar 

  19. Vieira, M.C.R. and Carvalho, F.A., de Oliveira Franco, M.K., Suarez, W.T., Vilanculo, C.B., dos Santos, M.H., and Gambarra-Neto, F.F., Ecotoxicol. Environ. Saf., 2021, vol. 213, p. 112043.

  20. Yang, J., Chen, L., Jiang, Q., and Yue, X., Fullerenes, Nanotubes, Carbon Nanostruct., 2019, vol. 27, no. 3, p. 233.

    Article  CAS  Google Scholar 

  21. Chowdhury, Z.Z., Abd Hamid, S.B., Rahman, Md.M., and Rafique, R.F., RSC Adv., 2016, vol. 6, p. 102680.

  22. Cailotto, S., Amadio, E., Facchin, M., Selva, M., Pontoglio, E., Rizzolio, F., Riello, P., Toffoli, G., Benedetti, A., and Perosa, A., ACS Med. Chem. Lett., 2018, vol. 9, no. 8, p. 832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 1-(2-Furyl)ethanone. https://webbook.nist.gov/cgi/cbook.cgi?ID=C1192627. Accessed November 4, 2022.

  24. Windig, W. and Giulment, J., Anal. Chem., 1991, vol. 63, no. 14, p. 1425.

    Article  CAS  Google Scholar 

  25. Wold, S., Esbessen, K., and Geladi, P., Chemom. Intell. Lab. Syst., 1987, vol. 2, nos. 1–3, p. 37.

  26. Tauler, R., Chemom. Intell. Lab. Syst., 1995, vol. 30, no. 1, p. 133.

    Article  CAS  Google Scholar 

  27. Ruckebusch, C. and Blanchet, L., Anal. Chim. Acta, 2013, vol. 765, p. 28.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-03-00692).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Karpushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpushkin, E.A., Bugerya, A.A., Lopatina, L.I. et al. Factorial-Based Analysis of the Hydrothermal Transformations of Glucose. rev. and adv. in chem. 12, 195–213 (2022). https://doi.org/10.1134/S2634827622600220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622600220

Keywords:

Navigation