Skip to main content
Log in

Synthesis and Crystal Structure of Tris(3-fluorophenyl)antimony Bis(2-methylcarboranylcarboxylate)

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract—

Oxidation of tris(3-fluorophenyl)antimony with tert-butyl hydroperoxide in the presence of 2-methylcarboranylcarboxylic acid leads to the formation of tris(3-fluorophenyl)antimony bis(2-methylcarboranylcarboxylate) (1), whose structural features were established by X-ray diffraction analysis. According to X-ray diffraction analysis carried out at 293 K using a D8 Quest Bruker automatic four-circle diffractometer (two-coordinate CCD detector, MoKα radiation, λ = 0.71073 Å, graphite monochromator), crystals are characterized as follows: C26H38B20F3O4Sb, M 809.52; monoclinic syngony, symmetry group С2/c; cell parameters: a = 19.050(13) Å, b = 14.441(9) Å, c = 14.568(9) Å; α = 90°, β = 98.51(2)°, γ = 90°; V = 3964(4) Å3 ; Z = 4; crystal size 0.8 × 0.55 × 0.29 mm; reflection index intervals –25 ≤ h ≤ 25, –18 ≤ k ≤ 18, –18 ≤ l ≤ 19; total reflections 37 401; independent reflections 4709; Rint 0.0545; GOOF 1.108; R1 = 0.0578, wR2 = 0.1482; residual electron density –0.59/1.09 e /Å3. According to the X-ray diffraction data, the antimony atoms in the molecules of compound 1 have a distorted trigonal-bipyramidal coordination with oxygen atoms of the carboxylate ligands in axial positions. The Sb–C bonds (2.104(4)–2.114(8) Å) are shorter than the Sb–O distances (2.113(3) Å), the OSbО axial angle is 178.48(15)°, the CSbC angles are 109.7(2)°, 118.4(2)°, and 131.8(3)°. The significant increase in one of the angles is associated with the cis-conformation of carboxylate ligands relative to the equatorial plane. There is a propeller conformation of aryl ligands with respect to the equatorial plane [C3]. Structure 1 contains intramolecular Sb···O=C contacts between the antimony and oxygen atoms of the carbonyl groups of the carboxylate ligands, which are 3.089(3) Å. The formation of a spatial network in the crystal of compound 1 is due to the presence of weak hydrogen bonds carboxylate ligands and fluorine aryl ligands with the participation of boron atoms: B···H (3.19 Å) and F···B (3.45 Å). Complete tables of atomic coordinates, bond lengths, and bond angles have been deposited with the Cambridge Crystallographic Data Center (no. 2178731; deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/data_request/cif).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Cambridge Crystallographic Database, Cambridge, 2022. http://www.ccdc.cam.ac.uk.

  2. Sharutina, O.K. and Sharutin, V.V., Molekulyarnaya struktura organicheskikh soedinenii sur’my(V) (Molecular Structures of Antimony(V) Organic Compounds), Chelyabinsk: Yuzhno-Ural. Gos. Univ., 2012.

  3. Saxena, A.K., Ranjan, A., and Venkaramani, P.S., J. Fluorine Chem., 1993, vol. 64, nos. 1–2, p. 107.

    Article  CAS  Google Scholar 

  4. Geng, H., Hong, M., Yang, Y., Li, D., Li, X.Liu., and Niu, M., J. Coord. Chem., 2015, vol. 68, no. 16, p. 2938.

    Article  CAS  Google Scholar 

  5. Iftikhar, T., Rauf, M.K., Sarwar, S., Badshah, A., Waseem, D., Tahir, M.N., Khan, A., Khan, K.M., and Khan, G.M., J. Organomet. Chem., 2017, vol. 851, p. 89.

    Article  CAS  Google Scholar 

  6. Yu, L., Ma, Y.-Q., Wang, G.-C., and Li, J.-S., Heteroat. Chem., 2004, vol. 15, no. 1, p. 32.

    Article  CAS  Google Scholar 

  7. Quan, L., Yin, H., and Wang, D., Acta Crystallogr., Sect. E, 2008, vol. 64, no. 12, p. m1503.

    Article  CAS  Google Scholar 

  8. Hong, M., Yin, H.-D., Li, W.-K., and You, X.-Y., Inorg. Chem. Commun., 2011, vol. 14, no. 10, p. 1616.

    Article  CAS  Google Scholar 

  9. Barucki, H., Coles, S.J., Costello, J.F., Gelbrich, T., and Hursthouse, M.B., J. Chem. Soc., Dalton Trans., 2000, vol. 200, no. 14, p. 2319.

    Article  Google Scholar 

  10. Wen, L., Yin, H., and Wang, C., Acta Crystallogr., Sect. E, 2009, vol. 65, no. 11, p. m1442.

    Article  CAS  Google Scholar 

  11. Wen, L., Yin, H., Quan, L., and Wang, D., Acta Crystallogr., Sect. E, 2008, vol. 64, no. 10, p. m1303.

    Article  CAS  Google Scholar 

  12. Islam, A., Da Silva, J.G., Berbet, F.M., Da Silva, S.M., Rodrigues, B.L., Beraldo, H., Melo, M.N., Frézard, F., and Demicheli, C., Molecules, 2014, vol. 19, no. 5, p. 6009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Letyanina, I.A., Markin, A.V., Smirnova, N.N., Klimova, M.N., Kalistratova, O.V., and Gushchin, A.V., J. Therm. Anal. Calorim., 2016, vol. 125, no. 1, p. 339.

    Article  CAS  Google Scholar 

  14. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., Platonova, T.P., Smirnova, S.V., Pushilin, M.A., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2003, vol. 29, p. 780.

    Article  CAS  Google Scholar 

  15. Sharutin, V.V., Sharutina, O.K., Efremov A.N., Russ. J. Inorg. Chem., 2016, vol. 61, no. 1, p. 43.

  16. Kalistratova, O.S., Andreev, P.V., Gushchin, A.V., Somov, N.V., and Chuprunov, E.V., Crystallogr. Rep., 2016, vol. 61, no. 3, p. 391.

    Article  CAS  Google Scholar 

  17. Duffin, R.N., Blai, V.L., Kedzierski, L., and Andrews, P.C., J. Chem. Soc., Dalton Trans., 2018, vol. 47, no. 3, p. 971.

    Article  CAS  Google Scholar 

  18. Sharutin, V.V., Sharutina, O.K., Reshetnikova, R.V., Lobanova, E.V., and Efremov, A.N., Russ. J. Inorg. Chem., 2017, vol. 62, no. 11, p. 1450.

    Article  CAS  Google Scholar 

  19. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., Bregadze, V.I., and Zhigareva, G.G., Russ. J. Gen. Chem., 2010, vol. 80, no. 10, p. 1941.

    Article  CAS  Google Scholar 

  20. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., Glazun, S.A., and Bregadze, V.I., Butlerov. Soobshch., 2011, vol. 28, no. 19, p. 54.

    Google Scholar 

  21. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., Starikova, Z.A., Glazun, S.A., and Bregadze, V.I., Butlerov. Soobshch., 2012, vol. 29, no. 3, p. 51.

    Google Scholar 

  22. Bregadze, V.I., Glazun, S.A., and Efremov, A.N., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2019, vol. 11, no. 4, p. 17.

    Google Scholar 

  23. Artem’eva, E.V., Duffin, R.N., Munuganti, S., Efremov, A.N., Andrews, P.C., Sharutina, O.K., and Sharutin, V.V., Polyhedron, 2022, vol. 213, p. 115627.

  24. Bruker SMART and SAINT-Plus, Data Collection and Processing Software for the SMART system, ver. 5.0, Madison: Bruker AXS, 1998.

  25. Bruker SHELXTL/PC, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, ver. 5.10, Madison: Bruker AXS, 1998.

    Google Scholar 

  26. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  27. Mantina, M., Chamberlin, A.C., Valero, R., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. A., 2009, vol. 113, no. 19, p. 5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bregadze, V.I., Efremov, A.N., Glazun, S.A. et al. Synthesis and Crystal Structure of Tris(3-fluorophenyl)antimony Bis(2-methylcarboranylcarboxylate). rev. and adv. in chem. 12, 277–282 (2022). https://doi.org/10.1134/S2634827623700101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700101

Keywords

Navigation