Skip to main content
Log in

O21Δg) Airglow at 1.27 μM and upper Mesosphere Dynamics on the Night Side of Venus

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

This research studies the O2 (a1Δg) nightglow distribution in 1.27 μm to understand the dynamics of the atmosphere of Venus. Several factors were considered in the retrieval process, such as thermal emission of the lower atmosphere, reflection by the clouds. Results show deviation from SS-AS circulation mode: the area where horizontal flows from the dayside converge and where oxygen recombines and emits shifts from the midnight to 22–23 hours local time. This shift is caused by solar-induced thermal tide on Venus nightside. Some conclusions about the upper mesosphere dynamics are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Altieri, F., Migliorini, A., Zasova, L., Shakun, A., Piccioni, G., and Bellucci, G., Modeling VIRTIS/VEX O2(a1Δg) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere, J. Geophys. Res.: Planets, 2014, vol. 119, no. 1, pp. 2300–2316. https://doi.org/10.1002/2013JE004585

    Article  ADS  Google Scholar 

  2. Arnold, G., Haus, R., Kappel, D., Drossart, P., and Piccioni, G., Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach, J. Geophys. Res., 2008, vol. 113, no. 3, p. E00B10. https://doi.org/10.1029/2008JE003087

    Article  ADS  Google Scholar 

  3. Bailey, J., Meadows, V.S., Chamberlain, S., and Crisp, D., The temperature of the Venus mesosphere from O2(a1Δg) airglow observations, Icarus, 2008, vol. 197, pp. 247–259. https://doi.org/10.1016/j.icarus.2008.04.007

    Article  ADS  Google Scholar 

  4. Bailey, J., A comparison of water vapor line parameters for modeling the Venus deep atmosphere, Icarus, 2009, vol. 201, no. 2, pp. 444–453. https://doi.org/10.1016/j.icarus.2009.01.013

    Article  ADS  Google Scholar 

  5. Bertaux, J.-L., Khatuntsev, I.V., Hauchecorne, A., Markiewicz, W.J., Marcq, E., and Lebonnois, S., Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res.: Planets, 2016, vol. 121, pp. 1087–1101. https://doi.org/10.1002/2015JE004958

    Article  ADS  Google Scholar 

  6. Bézard, B., Tsang, C.C.C., Carlson, R.W., Piccioni, G., Marcq, E., and Drossart, P., Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations, J. Geophys. Res.: Planets, 2009, vol. 114, p. E00B39. https://doi.org/10.1029/2008JE003251

    Article  ADS  Google Scholar 

  7. Bougher, S.W., Gerard, J.C., Stewart, A.I.F., and Fesen, C.G., The Venus nitric oxide night airglow: Model calculations based on the Venus Thermospheric General Circulation Model, J. Geophys. Res.: Space Phys., 1990, vol. 95, no. A5, pp. 6271–6284. https://doi.org/10.1029/JA095iA05p06271

    Article  ADS  Google Scholar 

  8. Bougher, S.W. and Borucki, W.J., Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry, J. Geophys. Res.: Planets, 1994, vol. 99, no. E2, pp. 3759–3776. https://doi.org/10.1029/93JE03431

    Article  ADS  Google Scholar 

  9. Brecht, A.S., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., and Foster, B., Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere, J. Geophys. Res.: Atmos., 2011, vol. 116, no. E8, p. E08004. https://doi.org/10.1029/2010JE003770

    Article  ADS  Google Scholar 

  10. Connes, P., Noxon, J.F., Traub, W.A., and Carleton, P., O2(1D) emission in the day and night airglow of Venus, Astrophys. J., 1979, vol. 233, pp. L29–L32. https://doi.org/10.1086/183070

    Article  ADS  Google Scholar 

  11. Crisp, D., Meadows, V.S., Bézard, B., de Bergh, C., Maillard, J., and Mills, F.P., Ground-based near-infrared observations of the Venus nightside: 1.27-μm O2(a1Δg) airglow from the upper atmosphere, J. Geophys. Res.: Phys., 1996, vol. 101, pp. 4577–4593. https://doi.org/10.1029/95JE03136

    Article  ADS  Google Scholar 

  12. D’Incecco, P., Filiberto, J., Lopez, I., Gorinov, D., and Komatsu, G., Idunn Mons: Evidence for ongoing volcano-tectonic activity and atmospheric implications on Venus, Planet. Sci. J., 2021, vol. 2, no. 5, p. 215. https://doi.org/10.3847/PSJ/ac2258

    Article  Google Scholar 

  13. Drossart, P., Piccioni, G., Gérard, J.C., Lopez-Valverde, M.A., Sanchez-Lavega, A., Zasova, L., Hueso, R., Taylor, F.W., Bézard, B., Adriani, A., Angrilli, F., Arnold, G., Baines, K.H., Bellucci, G., Benkhoff, J., et al., A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express, Nature, 2007, vol. 450, pp. 641–645. https://doi.org/10.1038/nature06140

    Article  ADS  Google Scholar 

  14. Fukuhara, T., Futaguchi, M., Hashimoto, G.L., Horinouchi, T., Imamura, T., Iwagaimi, N., Kouyama, T., Murakami, S.-Y., Nakamura, M., Ogohara, K., Sato, M., Sato, T.M., Suzuki, M., Taguchi, M., and Takagi, S., And 4 co-authors. large stationary gravity wave in the atmosphere of Venus, Nat. Geosci., 2017, vol. 10, no. 2, pp. 85–88. https://doi.org/10.1038/ngeO2873

    Article  ADS  Google Scholar 

  15. Gérard, J.-C., Saglam, A., Piccioni, G., Drossart, P., Cox, C., Erard, S., Hueso, R., and Sánchez-Lavega, A., Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express, Geophys. Res. Lett., 2008, vol. 35, p. L02207. https://doi.org/10.1029/2007GL032021

    Article  ADS  Google Scholar 

  16. Gérard, J.-C., Cox, C., Saglam, A., Bertaux, J.-L., Villard, E., and Nehmé, C., Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express, J. Geophys. Res.: Atmos., 2008b, vol. 113, no. 9, p. E00B03. https://doi.org/10.1029/2008JE003078

    Article  Google Scholar 

  17. Gérard, J.-C., Soret, L., Saglam, A., Piccioni, G., and Drossart, P., The distributions of the OH Meinel and O2 (a1Δ–X3R) nightglow emissions in the Venus mesosphere based on VIRTIS observations, J. Adv. Space Res., 2010, vol. 45, pp. 1268–1275. https://doi.org/10.1016/j.asr.2010.01.022

    Article  ADS  Google Scholar 

  18. Gérard, J.-C., Soret, L., Piccioni, G., and Drossart, P., Latitudinal structure of the Venus O2 infrared airglow: A signature of small-scale dynamical processes in the upper atmosphere, Icarus, 2014, vol. 236, pp. 92–103. https://doi.org/10.1016/j.icarus.2014.03.028

    Article  ADS  Google Scholar 

  19. Gorinov, D.A., Khatuntsev, I.V., Zasova, L.V., Turin, A.V., and Piccioni, G., Circulation of Venusian atmosphere at 90–110 km based on apparent motions of the O2 1.27 μm nightglow from VIRTIS-M (Venus Express) data, Geophys. Res. Lett., 2018, vol. 45, no. 5, pp. 2554–2562. https://doi.org/10.1002/2017GL076380

    Article  ADS  Google Scholar 

  20. Haus, R., Kappel, G., and Arnold, G., Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements, Icarus, 2014, vol. 232, pp. 232–248. https://doi.org/10.1016/j.icarus.2014.01.020

    Article  ADS  Google Scholar 

  21. Hueso, R., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., and Migliorini, A., Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations, J. Geophys. Res.: Planets, 2008, vol. 113, p. E00B02. https://doi.org/10.1029/2008JE003081

    Article  ADS  Google Scholar 

  22. Ignatiev, N.I., Moroz, V.I., Moshkin, B.E., Ekonomov, A.P., Gnedykh, V.I., Grigoriev, A.V., and Khatuntsev, I.V., Water vapour in the lower atmosphere of Venus: A new analysis of optical spectra measured by entry probes, Adv. Space Res., 1997, vol. 19, no. 8, pp. 1159–1168. https://doi.org/10.1016/S0273-1177(97)00267-6

    Article  ADS  Google Scholar 

  23. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., Ignatiev, N.I., Turin, A.V., Limaye, S.S., Markiewicz, W.J., Almeida, M., Roatsch, Th., and Moissl, R., Cloud level winds from the Venus Express monitoring camera imaging, Icarus, 2013, vol. 226, pp. 140–158. https://doi.org/10.1016/j.icarus.2013.05.018

    Article  ADS  Google Scholar 

  24. Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., Ignatiev, N.I., Turin, A.V., Fedorova, A.A., and Markiewicz, W.J., Winds in the middle cloud deck from the near-IR imaging by the Venus monitoring camera onboard Venus Express, J. Geophys. Res.: Planets, 2017, vol. 122, pp. 2312–2327. https://doi.org/10.1002/2017JE005355

    Article  ADS  Google Scholar 

  25. Krasnopol’skii, V.A., Krys’ko, A.L., Rogachev, V.N., and Parshev, V.L., Spectroscopy of the night glow of Venus from the orbiters Venera 9, 10, Kosm. Issled., 1976, vol. 14, pp. 789–795.

    ADS  Google Scholar 

  26. Krasnopolsky, V.A., Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model, Icarus, 2010, vol. 207, pp. 17–27. https://doi.org/10.1016/j.icarus.2009.10.019

    Article  ADS  Google Scholar 

  27. Marcq, E., Bézard, B., Drossart, P., Piccioni, G., Reess, J.M., and Henry, F.A., Latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS-H, J. Geophys. Res.: Planets, 2008, vol. 113, p. E00B07. https://doi.org/10.1029/2008JE003074

    Article  ADS  Google Scholar 

  28. Meadows, V.S. and Crisp, D., Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, J. Geophys. Res., 1996, vol. 101, pp. 4595–4622.

    Article  ADS  Google Scholar 

  29. Migliorini, A., Piccioni, G., Gérard, J.C., Soret, L., Slanger, T., Politi, R., Snels, M., Drossart, P., and Nuccilli, F., The characteristics of the O2 Herzberg II bands observed with VIRTIS/Venus Express, Icarus, 2013, vol. 223, no. 1, pp. 609–614. https://doi.org/10.1016/j.icarus.2012.11.017

    Article  ADS  Google Scholar 

  30. Navarro, T., Gilli, G., Schubert, G., Soret, L., Lebonnois, S., Lefevre, F., and Quirino, D., Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation, Icarus, 2021, vol. 366, p. 114400. https://doi.org/10.1016/j.icarus.2021.114400

    Article  Google Scholar 

  31. Ohtsuki, S., Iwagami, N., Sagawa, H., Ueno, M., Kasaba, Y., Imamura, T., Yanagisawa, K., and Nishihara, E., Distributions of the Venus 1.27-μm O2 airglow and rotational temperature, Planet. Space Sci., 2008, vol. 56, pp. 1391–1398. https://doi.org/10.1016/j.pss.2008.05.013

    Article  ADS  Google Scholar 

  32. Patsaeva, M.V., Khatuntsev, I.V., Zasova, L.V., Hauchecorne, A., Titov, D.V., and Bertaux, J.-L., Solar related variations of the cloud top circulation above Aphrodite Terra from VMC/Venus Express wind fields, J. Geophys. Res.: Planets, 2019, vol. 124, pp. 1864–1879. https://doi.org/10.1029/2018JE005620

    Article  ADS  Google Scholar 

  33. Piccioni, G., Zasova, L., Migliorini, A., Drossart, P., Shakun, A., García Muñoz, A., Mills, F.P., and Cardesin-Moinelo, A., Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere, J. Geophys. Res.: Atmos., 2009, vol. 114, p. E00B38. https://doi.org/10.1029/2008JE003133

    Article  ADS  Google Scholar 

  34. Rothman, L.S., Jacquemart, D., Barbe, A., Chris, BennerB., Birk, M., Brown, L.R., Carleer, M.R., Chackerian, C., Jr., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Flaud, J.-M., Gamache, R.R., Goldman, A., et al., The HITRAN 2004 molecular spectroscopic database, J. Quantum Spectrosc. Radiat. Transfer, 2005, vol. 96, no. 2, pp. 139–204. https://doi.org/10.1016/j.jqsrt.2004.10.008

    Article  ADS  Google Scholar 

  35. Saunders, R.S. and Pettengill, G.H., Magellan: Mission summary, Science, 1991, vol. 252, pp. 247–249. https://doi.org/10.1126/science.252.5003.247

    Article  ADS  Google Scholar 

  36. Shakun, A.V., Zasova, L.V., Piccioni G., Drossart, P., Migliorini, A., Investigation of oxygen O2(a1Δg) emission on the nightside of Venus: Nadir data of the VIRTIS-M experiment of the Venus Express mission, Cosmic Res., 2010, vol. 48, no. 3, pp. 232–239.

    Article  ADS  Google Scholar 

  37. Soret, L. and Gérard, J.-C., Is the O2(a1Δg) Venus nightglow emission controlled by solar activity?, Icarus, 2015, vol. 262, pp. 170–172. https://doi.org/10.1016/j.icarus.2015.08.030

    Article  ADS  Google Scholar 

  38. Soret, L., Gérard, J.-C., Piccioni, G., and Drossart, P., Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express, Geophys. Res. Lett., 2010, vol. 37, no. 6, p. L06805. https://doi.org/10.1029/2010GL042377

    Article  ADS  Google Scholar 

  39. Soret, L., Gérard, J.-C., Piccioni, G., and Drossart, P., Time variations of O2(a1Δ) nightglow spots on the Venus nightside and dynamics of the upper mesosphere, Icarus, 2014, vol. 237, pp. 306–314. https://doi.org/10.1016/j.icarus.2014.03.034

    Article  ADS  Google Scholar 

  40. Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K., Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 1988, vol. 27, pp. 2502–2509. https://doi.org/10.1364/AO.27.002502

    Article  ADS  Google Scholar 

  41. Stewart, A.I.F., Gérard, J.-C., Rusch, D.W., and Bougher, S.W., Morphology of the Venus ultraviolet night airglow, J. Geophys. Res.: Space Phys., 1980, vol. 85, pp. 7861–7870. https://doi.org/10.1029/JA085iA13p07861

    Article  ADS  Google Scholar 

  42. Svedhem, H., Titov, D.V., Taylor, F.W., and Witasse, O., The Venus Express mission, J. Geophys. Res.: Planets, 2009, vol. 114, . E00B33. https://doi.org/10.1029/2008JE003290

    Article  ADS  Google Scholar 

  43. Tashkun, S.A., Perevalov, V.I., Teffo, J.-L., Bykov, A.D., and Lavrentieva, N.N., CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, J. Quantum Spectrosc. Radiat. Transfer, 2003, vol. 82, nos. 1–4, pp. 165–196. https://doi.org/10.1016/S0022-4073(03)00152-3

    Article  ADS  Google Scholar 

  44. Titov, D.V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J.-L., Drossar, P., Formisano, V., Häusler, B., Korablev, O., Markiewicz, W.J., Nevejans, D., Pätzold, M., Piccioni, G., Zhang, T.L., et al., Venus Express science planning, Planet. Space Sci., 2006, vol. 54, pp. 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017

    Article  ADS  Google Scholar 

  45. Zasova, L.V., Moroz, V.I., Linkin, V.M., Khatuntsev, I.V., and Maiorov, B.S., Structure of the Venusian atmosphere from surface up to 100 km, Cosmic Res., 2006, vol. 44, no. 4, pp. 1–20.

    Article  Google Scholar 

  46. Zasova, L.V., Ignatiev, N., Khatuntsev, I., and Linkin, V., Structure of the Venus atmosphere, Planet. Space Sci., 2007, vol. 55, pp. 1712–1728. https://doi.org/10.1016/j.pss.2007.01.011

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

With a deep sorrow, the authors deliver the news of the untimely passing away of our colleague, A.V. Shakun, whose professionalism and leadership laid the foundation of this paper.

The authors are grateful to the Ministry of Science and Higher Education program no. 122042500018-9 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gorinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakun, A.V., Zasova, L.V., Gorinov, D.A. et al. O21Δg) Airglow at 1.27 μM and upper Mesosphere Dynamics on the Night Side of Venus. Sol Syst Res 57, 200–213 (2023). https://doi.org/10.1134/S0038094623030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623030085

Keywords:

Navigation