Skip to main content
Log in

Hemispherical Resonator Gyros (An Overview of Publications)

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper describes the current state of development of hemispherical resonator gyros (HRG). HRG is becoming the most perspective gyro for navigation systems of different applications. Its unique performance has made it a sensor of choice for the space industry. The gyro ensures high navigation accuracy while featuring smaller cost and size as compared to the ring laser and fiber-optic gyros. Multiple publications have been devoted to the HRG research and development. We provide a brief overview of publications describing the current state of the HRG technology and its further improvement and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Peshekhonov, V.G., The outlook for gyroscopy, Gyroscopy and Navigation, 2020, vol. 11, no. 3, pp. 193–197. https://doi.org/10.1134/S2075108720030062

    Article  Google Scholar 

  2. Foloppe, Y. and Lenoir, Y., HRG Crystal™ DUAL CORE: Rebooting the INS revolution, DGON Inertial Sensors and Systems (ISS), 2019, pp. 1–24. https://doi.org/10.1109/ISS46986.2019.8943660

  3. Rozelle, D.M., The hemispherical resonator gyro: From wineglass to the planets, Proceedings of the 19th AAS/AIAA Space Flight Mechanics Meeting, 2009, 134, pp. 1157–1178.

  4. Perelyaev, S.E., Review and analysis of the lines of development of strapdown inertial navigation systems on the basis of hemispherical resonator gyroscopes, Novosti navigatsii, 2018, no. 2, pp. 21–27.

  5. Perelyaev, S.E., Current state and scientific and technical forecast of the perspective application of foreign hemispherical resonator gyros (Analytical review of foreign materials), Novosti navigatsii, 2020, no. 3, pp. 14–28.

  6. Matveev, V.A., Lunin, B.S., and Basarab, M.A., Navigatsionnye sistemy na volnovykh tverdotel’nykh giroskopakh (Navigation Systems on Wave Solid-State Gyros), Moscow: Fizmatlit, 2008.

  7. Bodunov, B.P., Bodunov, S.B., Lopatin, V.M., and Chuprov, V.P., Development and tests of a wave solid-state gyro applied in inclinometric system, Giroskopiya i navigatsiya, 2001, no. 3, pp. 74–82.

  8. Delhaye, F., SpaceNaute® the HRG based Inertial Reference System of Ariane 6 European space launcher, Gyroscopy and Navigation, 2019, vol. 10, no. 1, pp. 1–6. https://doi.org/10.1134/S2075108719010036

    Article  Google Scholar 

  9. Raspopov, V.Ya., Mikromekhanicheskie pribory (Micromechanical Devices), Tula: Grif i K., 2004.

  10. Matveev, V.A., Lipatnikov, V.I., and Alekhin, A.V., Proektirovanie volnovogo tverdotel’nogo giroskopa (Designing a Wave Solid-State Gyro), Moscow: Bauman Moscow Technical University, 1997.

  11. Raspopov, V.Ya., Volchikhin, I.A., Volchikhin, A.I., Ladonkin, A.V., Likhosherst, V.V., and Matveev, V.V., Volnovoi tverdotel’nyi giroskop s metallicheskim rezonatorom (Wave Solid-State Gyro with a Metal Resonator), Raspopov, V.Ya., Ed., Tula: Tula State University, 2018.

    Google Scholar 

  12. Raspopov, V.Ya. and Ershov, R.V., Wave solid-state gyros with ring resonators, Datchiki i sistemy, 2009, no. 5, pp. 61–72.

  13. Lunin, B.S., Fiziko-khimicheskie osnovy razrabotki polusfericheskikh rezonatorov volnovykh tverdotel’nykh giroskopov (Physical and Chemical Basis of Designing the Gyro Hemispherical Resonators), Moscow: Moscow Aviation Institute, 2005.

  14. Lunin, B.S., Matveev, V.A., and Basarab, M.A., Volnovoi tverdotel’nyi giroskop. Teoriya i tekhnologiya (Wave Solid-State Gyroscope. Theory and Technology), Moscow: Radiotekhnika, 2014.

  15. Zhuravlev, V.F. and Klimov, D.M., Volnovoi tverdotel’nyi giroskop (Wave Solid-State Gyroscope), Moscow: Nauka, 1985.

  16. Klimov, D.M., Zhuravlev, V.F., and Zhbanov, Yu.K., Kvartsevyi polusfericheskii resonator (volnovoi tverdotel’nyi giroskop) (Quartz Hemispherical Resonator of a HRG), Moscow: Kim L.A., 2017.

  17. Merkuryev, I.V. and Podalkov, V.V., Dinamika mikromekhanicheskogo i volnovogo tverdotel’nogo giroskopov (Dynamics of Micromechanical and Wave Solid-State Gyroscopes), Moscow: Fizmatlit, 2009.

  18. Basarab, M.A., Kravchenko, V.F., and Matveev, V.A., Matematicheskoe modelirovanie fizicheskikh protsessov v giroskopii (Mathematical Simulation of Physical Processes in Gyroscopy), Moscow: Radiotekhnika, 2005.

  19. Shishakov, K.V., Tverdotel’nye volnovye giroskopy: volnovye protsessy, upravlenie, sistemnaya integratsia (Wave Solid-State Gyros: Wave Processes, Control, System Integration), Izhevsk: Izhevsk State Technical University, 2018.

  20. Machekhin, P.K., Nazarov, S.B., and Trutnev, G.A., A method and a system for wave solid-state gyro drift compensation, RF Patent 2619815, 2017.

  21. Wu, X., Xi, X., Wu, Y., and Xiao, D, Cylindrical Vibratory Gyroscope, Springer Nature Singapore Ltd., 2021. https://doi.org/10.1007/978-981-16-2726-2

  22. Volchikhin, I.A., Volchikhin, A.I., Malyutin, D.M., Matveev, V.V., Raspopov, V.Ya., Telukhin, S.V., and Shvedov, A.P., Wave solid-state gyroscopes: An analytical review, Izvestiya TulGU: Tekhnicheskie nauki, 2017, no. 9, part 2, pp. 59–78.

  23. Raspopov, V.Ya., Alaluev, R.V., Ladonkin, A.V., Likhosherst, V.V., and Shepilov, S.I., Tuning and calibration of a Coriolis Vibratory Gyroscope with a metal resonator to operate in angular rate sensor mode, Gyroscopy and Navigation, 2020, vol. 11, no. 1, pp. 34–40.

    Article  Google Scholar 

  24. Matveev, V.V., Wave solid-state gyroscope with metal resonator, Izvestiya TulGU: Tekhnicheskie nauki, 2020, no. 11, pp. 377–384. https://doi.org/10.1134/S2075108720010113

  25. Ranji, A.R., Damodaran, V., Li, K., Chen, Z, Alirezaee, S., and Ahamed, M.J., Recent advances in MEMS-based 3D hemispherical resonator gyroscope (HRG) – A sensor of choice, Micromachines (Basel), 2022, Oct 5, vol. 13, no. 10, 1676. https://doi.org/10.3390/mi13101676

    Article  Google Scholar 

  26. Meyer, D. and Rozelle, D., Milli-HRG inertial navigation system, Gyroscopy and Navigation, 2012, vol. 3, no. 4, pp. 227–234. https://doi.org/10.1134/S2075108712040086

    Article  Google Scholar 

  27. Jeanroy, A., Bouvet, A., and Remillieux, G., HRG and marine applications, Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 67–74. https://doi.org/10.1134/S2075108714020047

    Article  Google Scholar 

  28. Meyer, A.D., Rozelle, D.M., Trusov, A.A., and Sakaida, D.K, Milli-HRG inertial sensor assembly – A reality, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, April 2018, pp. 20–23.

  29. Timoshenkov, S.P., Anchutin, S.A., and Plekhanov, V.E., Development of mathematical descriptions of the micromechanical ring gyro, Nano- i mikrosistemnaya tekhnika, 2014, vol. 5, pp. 18–25.

  30. Busurin, V.I., Zheglov, M.A., Shleenkin, L.A., Korobkov, K.A., and Bulychev, R.P., Development of an algorithm to suppress frequency splitting of an axisymmetric resonator of a wave solid-state gyroscope with optical detection, Measurement Techniques, 2020, vol. 62, no. 10, pp. 879–884. https://doi.org/10.32446/0368-1025it.2019-10-29-34

    Article  Google Scholar 

  31. Severov, L.A., Ponomarev, V.K., Panferov, A.I., and Ovchinnikova, N. A., Structure and characteristics of a MEMS wave angular rate sensor with a ring resonator, Gyroscopy and Navigation, 2015, vol. 6, no. 1, pp. 45–53. https://doi.org/10.1134/S2075108715010113

    Article  Google Scholar 

  32. Dzhandzhgava, G.I., Babichenko, A.V., Trebukhov, A.V., and Nekrasov, A.V., Neural network calibration algorithm for a wave solid-state gyro, Inzhenernaya fizika, 2010, no. 9.

  33. Bodunov, B.P., Lopatin, V.M., and Lunin, B.S., Balancing the HRG hemispherical resonator, RF Patent 2147117, 2000.

  34. Basarab, M.A., Lunin, B.S., and Chumankin, E.A., Balancing the metal resonators of general purpose wave solid-state gyros, Dinamika slozhnykh system—XXI vek, 2021, vol. 15, no. 1, pp. 58–68.

  35. Ermakov, R.V., Kondratov, D.V., L’vov, A.A., and Seranova, A.A., Studying the vibration error of wave solid-state gyro, International symposium Nadezhnost’ i kachestvo (Reliability and Quality), 2018, vol. 1, pp. 236–238.

  36. Hopkin, I.D., Fell, C.P., Townsend, K., and Mason, T.R., Vibrating structure gyroscope, US Patent US005932804A, 1999.

  37. Lynch, D. and Matthews, A., Vibratory rotation sensor, Patent EP 0881464, 1998.

  38. Zhuravlev, V.F. and Perelyaev, S.E., Wave solid-state gyro—A new generation inertial sensor with combined performance mode, Innovatsionnye, informatsionnye i kommunikatsionnye tekhnologii, 2016, no. 1, pp. 425–431.

  39. Bodunov, B.P., Bodunov, S.B., Vladimirov, V.A., Igonin, A.N., and Kostenok, N.A., Dual-mode HRG for space application, 20th St. Petersburg International Conference on Integrated Navigation Systems, 2013.

  40. Klimov, D.M., Zhuravlev, V.F., Perelyeav, S.E., and Alekhin, A.V., A method to pick off and control the oscillations of a wave solid-state gyro, RF Patent, 2019.

    Google Scholar 

  41. Perelyeav, S.E., Fundamental questions of the theory of combined free two-mode gyroscopes, Mechanics of Solids, 2021, vol. 56, no. 4, pp. 485–494. https://doi.org/10.3103/S0025654421040142

    Article  Google Scholar 

  42. Perelyeav, S.E. and Skripkin, A.A., Integrating wave solid-state gyro, RF patent 2144431, 2021.

  43. Loper, E. and Lynch, D.D., The HRG: A new low-noise inertial rotation sensor, Proceedings of 16th Joint Services Data Exchange for Inertial Systems, Los Angeles, USA, 16–18 Nov. 1982, pp. 432–433.

  44. Zhuravlev, V.Ph. and Klimov, D.M., Spatial effect of inertness of elastic waves on a sphere, Mechanics of Solids, 2021, vol. 56, no. 3, pp. 293–295. https://doi.org/10.3103/S002565442103016X

    Article  Google Scholar 

  45. Lynch, D.D., HRG development at Delco, Litton, and Northrop Grumman, The Anniversary Workshop on Solid-State Gyroscopy, 19–21 May 2008, Yalta, Ukraine, Kyiv-Kharkiv, ATS of Ukraine, 2009.

  46. Klimov, D.M., On the motion of an elastic inextensible ring, Mechanics of Solids, 2021, vol. 56, no. 6. https://doi.org/10.3103/S002565442106008X

  47. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Studying stationary oscillation modes of the gyro resonator in the presence of positional and parametric excitations, Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 217–221. https://doi.org/10.1134/S2075108714040099

    Article  Google Scholar 

  48. Wei, Z., Yi, G., Huo, Y., Qi, Z., and Xu, Z., The synthesis model of flat-electrode hemispherical resonator gyro, Sensors, 2019, vol. 19, no. 7, 1690. https://doi.org/10.3390/s19071690

    Article  Google Scholar 

  49. Martynenko, Yu.G., Merkuryev, I.V., and Podalkov, V.V., Control of nonlinear vibrations of a vibrating ring microgyroscope, Mechanics of Solids, 2008, vol. 43, no. 3, pp. 379–390. https://doi.org/10.3103/S0025654408030102

    Article  Google Scholar 

  50. Egarmin, N.E. and Yurin, V.E., Introduction to the Theory of Vibratory Gyroscopes, Moscow: Binom, 1993.

    Google Scholar 

  51. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Nonlinear effects in dynamics of cylindrical resonator of wave solid-state gyro with electrostatic control system, Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 224–229. https://doi.org/10.1134/S2075108715030104

    Article  Google Scholar 

  52. Maslov, D.A. and Merkuryev, I.V., Impact of nonlinear properties of electrostatic control sensors on the dynamics of a cylindrical resonator of a wave solid-state gyroscope, Mechanics of Solids, 2021, vol. 56, no. 6, pp. 960–979. https://doi.org/10.3103/S002565442106011X

    Article  Google Scholar 

  53. Maslov, A.A., Maslov, D.A., Merkuryev, I.V., and Podalkov, V.V., Dynamics of the ring micromechanical gyroscope taking into account the nonlinear stiffness of the suspension, 26th St. Petersburg International Conference on Integrated Navigation Systems, 2019, pp. 361–364. https://doi.org/10.23919/ICINS.2019.8769369

  54. Naraikin, O.S., Sorokin, F.D., Kozubnyak, S.A., and Vakhlyarskii, D.S., Numerical simulation of the elastic wave precession in a CRG cylindrical resonator with nonuniform density, Vestnik MGTU im. Baumana. Mashinostroenie, 2017, no. 5, pp. 41–51. https://doi.org/10.18698/0236-3941-2017-5-41-51

  55. Vakhlyarskii, D.S., Guskov, A.M., Basarab, M.A., and Matveev, V.A., Numerical study of differently shaped HRG resonators with various defects, Nauka i obrazovanie. Bauman Moscow State University, 2016, no. 10, pp. 1–22. https://doi.org/10.7463/1016.0848188

  56. Maslov, A.A., Maslov, D.A., Merkuryev, I.V., and Podalkov, V.V., Scale factor of the wave solid-state gyroscope operating in the angular velocity sensor mode, 29th St. Petersburg International Conference on Integrated Navigation Systems, 2022. https://doi.org/10.23919/ICINS51784.2022.9815350

  57. Zhuravlev, V.F. and Izmailov, E.A., Analysis of conditions leading to Hemispherical Resonator Gyro drift, 8th St. Petersburg International Conference on Integrated Navigation Systems, 2001.

  58. Zhbanov, Yu.K. and Zhuravlev, V.F., On the balancing of a hemispherical resonator gyro, Mechanics of Solids, 1998, no. 4, pp. 2–13.

  59. Zhbanov, Yu.K. and Kalenova, N.V., Surface unbalance of a hemispherical resonator gyro, Mechanics of Solids, 2001, no. 3, pp. 7–12.

  60. Kalenova, N.V., The determination of the surface unbalance parameters of a hemispherical resonator gyro on the basis of its response to the angular vibration, Mechanics of Solids, 2004, no. 2, pp. 1–4.

  61. Kozubnyak, S.A., Splitting of natural frequencies of cylindrical resonator gyro due to non-ideal shape, Vestnik MGTU im. Baumana. Priborostroenie, 2015, no. 3 (102), pp. 39–49.

  62. Naraikin, O.S., Sorokin, F.D., and Kozubnyak, S.A., Splitting the natural frequencies of ring resonator of wave solid-state gyro caused by the shape disturbance, Inzhenernyi zhurnal: Nauka i Innovatsii, 2012, no. 6 (6), p. 48.

  63. Naraikin, O.S., Sorokin, F.D.,Kozubnyak, S.A., and Vakhlyarskii, D.S., Numerical simulation of elastic wave precession in a cylindrical resonator of wave solid-state gyro with uneven density, Vestnik MGTU im. Baumana. Mashinostroenie, 2017, no. 5 (116), pp. 41–51.

  64. Baranov P.N., Suminov, V.M., Oparin, V.I., Vinogradov, G.M., Lipatnikov, V.I., and Sharikov, E.T., Laser autobalancing device for wave solid-state gyro resonator, RF Patent RU2079107, 1997

  65. Lunin, B.S., Basarab, M.A., Matveev, V.A., and Chumankin, E.A., A method of quartz HRG resonator balancing, RF Patent RU2580175, 2016.

  66. Basarab, M.A., Lunin, B.S., Matveev, V.A., and Chumankin, E.A., Balancing of hemispherical resonator gyros by chemical etching, Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 218–223. https://doi.org/10.1134/S2075108715030025

    Article  Google Scholar 

  67. Lunin, B.S., Basarab, M.A., Yurin, A.V., and Chumankin, E.A., Fused quartz cylindrical resonators for low-cost vibration gyroscopes, 25th St. Petersburg International Conference on Integrated Navigation Systems, 2018.

  68. Zeng, L., Luo, Y., Pan, Y., Jia, Y., Liu, J., Tan, Z., Yang, K., and Luo, H., A 5.86 million quality factor cylindrical resonator with improved structural design based on thermoelastic dissipation analysis, Sensors (Basel), 2020, vol. 20, no. 21, 6003. https://doi.org//10.3390/s20216003

    Article  Google Scholar 

  69. Tao, Y., Pan, Y., Liu, J., Jia, Y., Yang, K., Luo, H., A novel method for estimating and balancing the second harmonic error of cylindrical fused silica resonators, Micromachines (Basel), 2021 Apr, vol. 12, no. 4, 380. https://doi.org//10.3390/mi12040380

    Article  Google Scholar 

  70. Chikovani, V.V., Yatsenko, Yu.A., and Mikolishin, Yu.T., Shock and vibration sensitivity test results for metallic resonator CVG, 16th St. Petersburg International Conference on Integrated Navigation Systems, 2009.

  71. Maslov, A.A., Merkuryev, I.V., and Podalkov, V.V., External vibration and shock impact on the dynamics of micromechanical gyroscopes, 22nd St. Petersburg International Conference on Integrated Navigation Systems, 2015.

  72. Seranova, A.A., Ermakov, R.V., L’vov, A.A., Kalikhman, D.M., and Kondratov, D.V., Investigation of helicopter MEMS inertial sensors under sinusoidal vibrations, Matematicheskoe modelirovanie, komp’yuternyi i naturnyi eksperiment v estestvennykh naukakh, 2018, no. 3.

  73. Dzhashitov, V.E. and Pankratov, V.M., Mathematical models of the thermoelastic stress-strain state, temperature, and technological errors of a wave solid-state sensor of inertial information, Journal of Machinery Manufacture and Reliability, 2010, vol. 39, no. 3, pp. 248–255. https://doi.org/10.3103/S1052618810030076

    Article  Google Scholar 

  74. Zhuravlev, V.Ph., Temperature drift of a Hemispherical Resonator Gyro (HRG), Mechanics of Solids, 2018, vol. 53, no. 3, pp. 241–248. https://doi.org/10.3103/S0025654418070014

    Article  Google Scholar 

  75. Chikovani, V.V., Yatsenko, Yu.A., Barabashov, A.S., Kovalenko, V.A., Scherban, V.I., and Marusyk, P.I., Metallic resonator CVG thermophysical parameter optimization and temperature test results, 14th St. Petersburg International Conference on Integrated Navigation Systems, 2007.

  76. Izmailov, E.A., Kolesnik, M.M., Osipov, A.M., and Akimov, A.V., Wave solid-state gyro technology. Challenges and possible solutions, Giroskopiya i navigatsiya, 1999, no. 4 (27), pp. 83–96.

  77. Jeanroy, A. and Leger, P., Capteur gyroscopique et appareil de mesure de rotation en comportant application, French Patent G01C 19/56 - FR 2792722, 1999.

  78. Lunin, B.S., Sensitive element of wave solid-state gyro, RF Patent, 7G01C 19/56 – RU 2166734, 2000.

  79. Gireesh Sharma N., T. Sundararajan, and S. Singh Gautam, Thermoelastic damping based design, sensitivity study and demonstration of a functional hybrid gyroscope resonator for high quality factor, Gyroscopy and Navigation, 2021, vol. 12, no. 1. https://doi.org/10.1134/S2075108721010107

  80. Timoshenkov, S.P., Simonov, B.M., Britkov, O.M., Anchutin, S.A. and Timoshenkov, A.S., Balancing the silica angular rate sensors during fabrication, Izvestiya vuzov. Elektronika, 2015, vol. 20, no. 1, pp. 58–67.

    Google Scholar 

  81. Kostornoi, A.N. and Konovalov, S.F., Matching the resonance frequencies of CMG ring resonator, Aviakosmicheskoe proborostroenie, 2016, no. 2, pp. 3–11.

  82. Bekmachev, A.E., Silicon sensing MEMS gyros and accelerometers: English traditions, Japanese technologies, Komponenty i tekhnologii, 2014, no. 4, pp. 18–26.

  83. Eklund, E.J. and Shkel, A.M., Self-inflated micro-glass blowing, US Patent 8151600 B2, 2008.

  84. Zotov, S.A., Trusov, A.A., and Shkel, A.M., Three-dimensional spherical shell resonator gyroscope fabricated using wafer-scale glassblowing, Journal of Microelectromechanical Systems, 2012, vol. 21, no. 3. https://doi.org/10.1109/JMEMS.2012.2189364

  85. Senkal, D., Ahamed, M.J., Ardakani, M.H.A., Askari, S., and Shkel, A.M., Demonstration of 1 million Q-factor on microglass blown wineglass resonators with out-of-plane electrostatic transduction, Journal of Microelectromechanical Systems, 2015, vol. 24, no. 1, pp. 29–37, no. 6955708. https://doi.org/10.1109/JMEMS.2014.2365113

  86. Asadian, M.H., Wang, Y., and Shkel, A.M., Development of 3D fused quartz hemi-toroidal shells for high-Q resonators and gyroscopes, Journal of Microelectromechanical Systems, 2019, vol. 28, no. 6, pp. 954–964, no. 8884648. https://doi.org/10.1109/JMEMS.2019.2945713

  87. Asadian, M.H., Wang, D., Wang, Y., and Shkel, A.M., 3D dual-shell micro-resonators for harsh environments, Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020.

  88. Asadian, M.H., Wang, D., and Shkel, A.M., Fused quartz dual-shell resonator gyroscope, Journal of Microelectromechanical Systems, 2022, vol. 31, pp. 533–554. https://doi.org/10.1109/JMEMS.2022.3166213

    Article  Google Scholar 

  89. Sun, J., Yu, S., Xi, X., Lu, K., Shi, Y., Wu, X., Xiao, D., and Zhang, Y., Investigation of angle drift induced by actuation electrode errors for whole-angle micro-shell resonator gyroscope, IEEE Sensors Journal, 2022, vol. 22, no. 4, pp. 3105–3112. https://doi.org/10.1109/JSEN.2022.3140799

    Article  Google Scholar 

  90. Li, C., Wang, Y., Ahn, C. K., Zhang, C., and Wang, B., Milli-Hertz frequency tuning architecture towards high repeatable micromachined axi-symmetry gyroscopes, IEEE Transactions on Industrial Electronics, 2022. https://doi.org/10.1109/TIE.2022.3192672

  91. Zhuravlev, V.F., On feedback generation in the spatial Van der Pol oscillator, Prikladnaya matematika i mekhanika, 2020, vol. 84, no. 2, pp. 151–157. https://doi.org/10.31857/S0032823520010105

    Article  Google Scholar 

  92. Perelyaev, S.E., Bodunov, S.B., and Bodunov, B.P., Navigation grade wave solid-state gyro for air-space applications, 29th St. Petersburg International Conference on Integrated Navigation Systems, 2022.

  93. Zhbanov, Yu.K., Amplitude control contour in a hemispherical resonator gyro with automatic compensation for difference in Q-factors, Mechanics of Solids, 2008, vol. 43, no. 3, pp. 328–332. https://doi.org/10.3103/S0025654408030035

    Article  Google Scholar 

  94. Zhbanov, Yu.K. and Zhuravlev, V.Ph., Effect of movability of the resonator center on the operation of a hemispherical resonator gyro, Mechanics of Solids, 2007, vol. 42, no. 6, pp. 851–859. https://doi.org/10.3103/S0025654407060039

    Article  Google Scholar 

  95. Zhbanov, Yu.K., Self-adaptive quadrature suppression loop in a wave solid-state gyro, Giroskopiya i navigatsiya, 2007, no. 2, pp. 37–43.

  96. Shatalov, A.B., Sokolov, S.V., Pogorelov, V.A., and Gashenenko, I.N., High-precision estimation of the oscillation parameters of a solid-state wave gyroscope’s resonator using stochastic filtration methods, Mechanics of Solids, 2022, vol. 57, no. 1, pp. 121–127. https://doi.org/10.3103/S0025654422010149

    Article  MATH  Google Scholar 

  97. Busurin, V.I., Fam, A.T., Korobkov, V.V., Medvedev, V.M., and Zheglov, M.A., Method of designing a single-axis MEMS optical angular rate sensor, Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta, 2018, vol. 18, no. 2, pp. 93–102. https://doi.org/10.14529/ctcr180209

  98. Trutnev, G.A., Perevozchikov, K.K., and Nazarov, S.B., Detecting and measurement of solid-state wave gyro resonator vibrations, Vestnik MGTU im. Baumana. Priborostroenie, 2020, no. 1, pp. 50–63. https://doi.org/10. 18698/0236-3933-2020-1-50-63

  99. Shatalov, M. and Coetzee, Ch., Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes, Gyroscopy and Navigation, 2011, vol. 2, no. 1. https://doi.org/10.1134/S2075108711010093

  100. Red’kin, S.P., Mathematical model of the thermal drift rate of wave solid-state gyro, Aviakosmicheskoe priborostroenie, 2014, no. 5, pp. 9–13.

  101. Red’kin, S.P., Errors of integrating wave solid-state gyro caused by errors in angular sensor signal components, Aviakosmicheskoe priborostroenie, 2014, no. 6, pp. 23–30.

  102. Maslov, A.A., Maslov, D.A., Merkuryev, I.V., and Podalkov, V.V., Compensation of wave solid-state gyro drifts caused by anisotropy of elastic properties of a single-crystal resonator, Gyroscopy and Navigation, 2020, vol. 11, no. 3. https://doi.org/10.1134/S2075108720030050

  103. Zhbanov, Yu.K., Estimation of the quality of a hemispherical resonator gyro on the basis of the evolution of its free vibrations, 12th St. Petersburg International Conference on Integrated Navigation Systems, 2005.

  104. Gavrilenko, A.B., Merkuryev, I.V., and Podalkov, V.V., Experimental methods of determining the parameters of viscoelastic anisotropy of wave solid-state gyro resonator, Vestnik MEI, 2010, no. 5, pp. 13–19.

  105. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Identification of wave solid-state gyro parameters with account for the resonator oscillation nonlinearity, Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2014, no. 5, pp. 18–23.

  106. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., A method of determining the parameters of wave solid-state gyro, RF Patent 2544308, Byulleten, 2015, no. 14.

  107. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Accounting for nonlinearity of resonator oscillations in the identification of parameters of solid-state wave gyroscopes of different types, Mechanics of Solids, 2022, vol. 57, no. 6, pp. 1300–1310. https://doi.org/10.3103/S0025654422060073

    Article  MATH  Google Scholar 

  108. Maslov, D.A. and Merkuryev, I.V., Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode, Russian Journal of Nonlinear Dynamics, 2017, vol. 13, no. 2. https://doi.org/10.20537/nd1702006

  109. Basarab, M., Ivanov, I., and Lunin, B., Parameter estimation of the solid-state wave gyroscope on the basis of the neural network autoregression algorithm for time series prognosis, 28th St. Petersburg International Conference on Integrated Navigation Systems, 2021.

  110. Babichenko, A.V. and Nekrasov, A.V., Mathematical models of the neural networks in the missions of an aircraft navigation system, Aviakosmicheskoe priborostroenie, 2008, no. 11, pp. 33–41.

  111. Trusov, A.A., Phillips, M., McCammon, G.H., Rozelle, D., and Meyer, A. D., Continuously self-calibrating CVG system using hemispherical resonator gyroscopes, 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings, Hapuna Beach, HI, USA, 23–26 March 2015. https://doi.org/10.1109/ISISS.2015.7102362

  112. Deleaux, B. and Lenoir, Y., The world smallest, most accurate and reliable pure inertial navigator: ONXY, Inertial Sensors and Systems, Braunschweig, Germany, 2018.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maslov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.A., Maslov, D.A., Ninalalov, I.G. et al. Hemispherical Resonator Gyros (An Overview of Publications). Gyroscopy Navig. 14, 1–13 (2023). https://doi.org/10.1134/S2075108723010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108723010054

Keywords:

Navigation