Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T20:25:50.083Z Has data issue: false hasContentIssue false

Evidence of the anthropogenic origin of the ‘Carmel sapphire’ with enigmatic super-reduced minerals

Published online by Cambridge University Press:  19 April 2023

Evgeny Galuskin*
Affiliation:
Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia, Poland
Irina Galuskina
Affiliation:
Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia, Poland
*
Corresponding author: Evgeny Galuskin, Email: evgeny.galuskin@us.edu.pl; Irina Galuskina, Email: irina.galuskina@us.edu.pl

Abstract

Corundum with inclusions of enigmatic super-reduced minerals was found in mineral separates received as a result of alluvial sediment exploration near Mt Carmel, Israel by the Shefa Yamim Company. This corundum, registered as ‘Carmel sapphireTM’, has been an object of numerous publications by W. Griffin's scientific team, in which they propose a questionable hypothesis of sapphire formation at the crust–mantle boundary with the participation of CH4+H2 fluids. Typically the Carmel sapphire is in small fragments of breccia with white cement, which in the opinion of Griffin et al. is a carbonate-cemented volcanic ash. Our investigation of the ‘white breccia’ showed that it consists of unsorted angular fragments of Carmel sapphire from ~1 μm to 7 mm in size cemented by aluminium hydroxides (bauxite) and is a waste product of the fused alumina process, i.e. it has an anthropogenic origin. Phases typical for slags of fused alumina production and metallurgical slags were identified in the ‘white breccia’. Carmel sapphire has numerous microscopic spherical inclusions of Si–Fe alloy indicating that the removal of Si and Fe from the corundum melt occurred at a temperature >2000°С. Osbornite, TiN, from Carmel sapphire has a chemical zonation characteristic of osbornite from fused alumina with enrichment of central zones in carbon. Comparison of the growth heterogeneity of Carmel sapphire and ‘electrocorundum’ indicates that the crystallisation of the corundum melt proceeded in a similar way. Unfortunately, in the case of Carmel sapphire from the Carmel locality, the contamination of geological samples with anthropogenic material has led to popularisation of biased views.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey Krivovichev

References

Ballhaus, C., Helmy, H.M., Fonseca, R.O.C., Wirth, R., Schreiber, A. and Jöns, N. (2021) Ultra-reduced phases in ophiolites cannot come from Earth's mantle. American Mineralogist, 106, 10531063.CrossRefGoogle Scholar
Bannister, F.A. (1941) Osbornite, meteoritic titanium nitride. Mineralogical Magazine, 26, 3644.CrossRefGoogle Scholar
Bindi, L., Cámara, F., Griffin, W.L., Huang, J.-X., Gain, S.E.M., Toledo, V. and O'Reilly, SY (2019) Discovery of the first natural hydride. American Mineralogist, 104, 611614.CrossRefGoogle Scholar
Bindi, L., Cámara, F., Gain, S.E.M., Griffin, W.L., Huang, J.-X., Saunders, M. and Toledo, V. (2020) Kishonite, VH2, and Oreillyite, Cr2N, two new minerals from the corundum xenocrysts of Mt Carmel, Northern Israel. Minerals, 10, 1118.CrossRefGoogle Scholar
Cámara, F., Bindi, L., Pagano, A., Pagano, R., Gain, S.E.M. and Griffin, W.L. (2019) Dellagiustaite: a novel natural spinel containing V2+. Minerals, 9, 4.CrossRefGoogle Scholar
Dobrzhinetskaya, L.F., Wirth, W., Yang, J., Hutcheon, I.D., Weber, P.K. and Green, H.W. (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences USA, 106, 1923319238.CrossRefGoogle ScholarPubMed
Dobrzhinetskaya, L., Mukhin, P., Wang, Q., Wirth, R., O'Bannon, E., Zhao, W., Eppelbaum, L. and Sokhonchuk, T. (2018) Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies. Lithos, 310–311, 355368.CrossRefGoogle Scholar
Escobar-Alarcon, L., Medina, V., Romero, E.C.S., Fernandez, M. and Solis-Casados, D. (2011) Microstructural characterization of Ti–C–N thin films prepared by reactive crossed beam pulsed laser deposition. Applied Surface Science, 257, 90339037.CrossRefGoogle Scholar
Galuskin, E., Galuskina, I.O., Kamenetsky, V., Ye, Vapnik., Kusz, J. and Zieliński, G. (2022) First in-situ terrestrial osbornite (TiN) in the pyrometamorphic Hatrurim Complex, Israel. Lithosphere, 2022, 81277447.CrossRefGoogle Scholar
Galuskin, E.V., Kusz, J., Galuskina, I.O., Książek, M., Ye, Vapnik. and Zieliński, G. (2023) Discovery of terrestrial andreyivanovite, FeCrP, and the effect of Cr and V substitution in barringerite-allabogdanite low-pressure transition. American Mineralogist, doi: 10.2138/am-2022-8647CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Adams, D.T., Huang, J.-X., Saunders, M., Toledo, V., Pearson, N.J. and O'Reilly, S.Y. (2016a) First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel. Geology, 44, 14.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Adams, D.T., Toledo, V., Pearson, N.J. and O'Reilly, S.Y. (2016b) Deep-Earth methane and mantle dynamics: insights from Northern Israel, Southern Tibet and Kamachatka. Journal and Proceedings of the Royal Society of New South Wales, 149, 1733.Google Scholar
Griffin, W.L., Gain, S.E.M., Bindi, L., Toledo, V., Cámara, F., Saunders, M. and O'Reilly, S.Y. (2018) Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, Northern Israel. Minerals, 8, 601.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Huang, J.-X., Saunders, M., Shaw, S., Toledo, V. and O'Reilly, S.Y. (2019a) A terrestrial magmatic hibonite-grossite-vanadium assemblage: desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel. American Mineralogist, 104, 207219.CrossRefGoogle Scholar
Griffin, W.L., Toledo, V. and O'Reilly, S.Y. (2019b) Discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, v.340–341, p.181–190). Lithos, 348–349, 191–122.Google Scholar
Griffin, W.L., Gaina, S.E.M., Cámara, F., Bindi, L., Shaw, J., Alard, O., Saunders, M., Huang, J.-X., Toledo, V. and O'Reilly, S.Y. (2020a) Extreme reduction: mantle-derived oxide xenoliths from a hydrogen-rich environment. Lithos, 358–359, 18.Google Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Bindi, L., Alard, O., Toledo, V. and O'Reilly, S.Y. (2020b) Parageneses of TiB2 in corundum xenoliths from Mt. Carmel, Israel: siderophile behavior of boron under reducing conditions. American Mineralogist, 105, 16091621.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Alard, O., Shaw, J., Toledo, V. and O'Reilly, S.Y. (2021a) Nitrogen under super-reducing conditions: Ti oxynitride melts in xenolithic corundum aggregates from Mt Carmel (N. Israel). Minerals, 11, 780.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Cámara, F., Bindi, L., Spartà, D., Toledo, V. and O'Reilly, S.Y. (2021b) Cr2O3 in corundum: ultrahigh contents under reducing conditions. American Mineralogist, 106, 14201437.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M.J., Huang, J.-X., Alard, O., Toledo, V. and O'Reilly, S.Y. (2022) Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel: silicides, phosphides, and carbides. American Mineralogist, 107, 532549.CrossRefGoogle Scholar
Grokhovsky, V.I. (2006) Osbornite in Cb/Ch-like carbonaceous chondrite Isheyevo. 69th Annual Meteoritical Society Meeting, 2006, 52312006.Google Scholar
Gross, S. (1977) The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Jerusalem, Israel, 80 pp.Google Scholar
Hemberger, Y., Presser, V., Zimmermann, J., Krause, O. and Nickel, K.G. (2009) Cathodoluminescence microscopy: A fast, powerful method to analyze refractories. Conference Paper, 52th International Feuerfestkolloquium / International Colloquium on Refractories, Aachen, Germany.Google Scholar
Huang, J.-X., Xiong, Q., Gain, S.E.M., Griffin, W.L., Murphy, T.D., Shiryaev, A.A., Li, L., Toledo, V., Tomshin, M.D. and O'Reilly, S.Y. (2020) Immiscible metallic melts in the deep Earth: clues from moissanite (SiC) in volcanic rocks. Science Bulletin, 65, 14791488.CrossRefGoogle ScholarPubMed
Leitner, J., Vollmer, C. and Hoppe, P. (2018) A study of osbornite from enstatite chondrites at the submicrometer scale. 49th Lunar and Planetary Science Conference, LPI Contrib. No. 2083.Google Scholar
Litasov, K.D., Kagi, H. and Bekker, T.B. (2019a) Enigmatic super-reduced phases in corundum from natural rocks: possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340–341, 181190.CrossRefGoogle Scholar
Litasov, K.D., Bekker, T.B. and Kagi, H. (2019b) Reply to the discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, v.340–341, p.181–190) by W.L. Griffin, V. Toledo and S.Y. O'Reilly). Lithos, 348–349, 105170.Google Scholar
Lu, J.-G., Griffin, W.L., Huang, J.-X., Hong-Kun Dai, H.-K., Castillo-Oliver, M. and O'Reilly, S.Y. (2022) Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177, 29.CrossRefGoogle Scholar
Ma, C., Kampf, A.R., Connolly, H.C., Beckett, J.R., Rossman, G.R., Sweeney Smith, S.A. and Schrader, D.L. (2011) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist, 96, 709715.CrossRefGoogle Scholar
Ma, C., Bindi, L., Cámara, F. and Toledo, V. (2022a) Griffinite, IMA 2021-110, in: CNMNC Newsletter 66. Mineralogical Magazine, 86, 359362.Google Scholar
Ma, C., Griffin, W.L., Bindi, L., Cámara, F. and Toledo, V. (2022b) Magnéliite, IMA 2021-111, in: CNMNC Newsletter 66. Mineralogical Magazine, 86, 359362.Google Scholar
Ma, C., Griffin, W.L., Bindi, L., Cámara, F. and Toledo, V (2022c): Ziroite, IMA 2022-013, in: CNMNC Newsletter 68. Mineralogical Magazine, 86, 854859.Google Scholar
Ma, C., Griffin, W.L., Bindi, L., Cámara, F. and Toledo, V. (2022d): Sassite, IMA 2022-014, in: CNMNC Newsletter 68. Mineralogical Magazine, 86, 854859.Google Scholar
Ma, C., Griffin, W.L., Bindi, L., Cámara, F. and Toledo, V. (2022e): Mizraite-(Ce), IMA 2022-027, in: CNMNC Newsletter 68. Mineralogical Magazine, 86, 854859.Google Scholar
Ma, C., Griffin, W.L., Bindi, L. and Cámara, F. (2022f): Toledoite, IMA 2022-036, in: CNMNC Newsletter 68. Mineralogical Magazine, 86, 854859.Google Scholar
Ma, C., Griffin, W.L., Bindi, L., Cámara, F. and Toledo, V. (2023) Yeite, IMA 2022-079, in: CNMNC Newsletter 70. Mineralogical Magazine, 87, 160168.Google Scholar
Oliveira, B., Griffin, W.L., Gain, S.E.M., Saunders, M., Shaw, J., Toledo, V., Afonso, J.C. and O'Reilly, S.Y. (2021) Ti3+ in corundum traces crystal growth in a highly reduced magma. Scientific Reports, 11, 2439.CrossRefGoogle Scholar
Silaev, V.I., Karpov, G.A., Anikin, N.P., Vergasova, L.P., Fillipov, V.N. and Tarasov, K.V. (2019) Mineral-phase paragenesis in explosive products of modern volcanic eruptions in Kamchatka and Kurily. Part 2. Minerals-satellites of diamonds of the Tolbachik type. Journal Volcanology Seismology, 6, 3649.Google Scholar
Stan, C.S., O'Bannon III, E.F., Mukhin, P., Tamura, N. and Dobrzhinetskaya, L. (2020) X-ray Laue microdifraction and Raman spectroscopic investigation of natural silicon and moissanite. Minerals, 10, 204.CrossRefGoogle Scholar
Tatarintsev, V.I., Sandomirskaya, S.M. and Tsumbal, S.N. (1987) First discovery of titanium nitride (osbornite) in terrestrial rocks. Proceedings of the USSR Academy of Sciences, 296, 14581461.Google Scholar
Weber, D. and Bischoff, A. (1994) Grossite (CaAl4O7) – a rare phase in terrestrial rocks and meteorites. European Journal Mineralogy, 6, 591594.CrossRefGoogle Scholar
Weisberg, M.K., Prinz, M. and Nehru, C.E. (1988) Petrology of ALH85085 a chondrite with unique characteristics. Earth and Planetary Science Letters, 91, 1932.CrossRefGoogle Scholar
Xiong, Q., Griffin, W.L., Huang, J.-H., Gain, S.E.M., Toledo, V., Pearson, N.J. and O'Reilly, S.Y. (2017) Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: the view from Mount Carmel. European Journal Mineralogy, 29, 557570.CrossRefGoogle Scholar
Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E. and Robinson, P.T. (2020) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids? European Journal Mineralogy, 32, 557574.CrossRefGoogle Scholar
Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S. and Robinson, P.T. (2022) Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107, 4353.CrossRefGoogle Scholar
Xu, X., Yang, J., Guo, G. and Xiong, F. (2013) Mineral inclusions in corundum from chromitites in the Kangjinla chromite deposit. Tibet. Acta Petrolei Sinica, 29, 18671877.Google Scholar
Yatsenko, I.G., Skublov, S.G., Levashova, E.V., Galankina, O.L. and Bekesha, S.N. (2020) Composition of spherules and lower mantle minerals, isotopic and geochemical characteristics of zircon from volcaniclastic facies of the Mriya lamproite pipe. Journal of Mining Institute, 242, 150159.CrossRefGoogle Scholar
Yatsenko, I.G., Galankina, O.L., Marin, Yu.B. and Skublovb, S.G. (2021) Corundum with inclusions of extremely reduced minerals from explosive rocks of the Ukrainian Shield. Proceedings Russian Academy of Sciences, 500, 833837.Google Scholar
Yu, Erokhin., Khiller, V.V. and Zakharova, L.A. (2017) Cosmic mineralogy in metallurgical slags of the Urals. Mineralogy of Technogenesis, 2017, 7281.Google Scholar
Supplementary material: PDF

Galuskin and Galuskina supplementary material

Galuskin and Galuskina supplementary material

Download Galuskin and Galuskina supplementary material(PDF)
PDF 1.2 MB