Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 10, 2023

The brain serotonin system in autism

  • Alexander Ya Rodnyy , Elena M. Kondaurova , Anton S. Tsybko , Nina K. Popova , Dmitry A. Kudlay and Vladimir S. Naumenko EMAIL logo

Abstract

Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT–related drugs have potential for ASD treatment.


Corresponding author: Vladimir S. Naumenko, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia, E-mail:

Award Identifier / Grant number: 22-15-00028

Acknowledgment

The English language was corrected by shevchuk-editing.com.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was supported by the by Russian Science Foundation, project No. 22-15-00028.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdelrahman, H.M., Sherief, L.M., Alghobashy, A.A., Abdel Salam, S.M., Hashim, H.M., Abdel Fattah, N.R., and Mohamed, R.H. (2015). Association of 5-HT2A receptor gene polymorphisms with gastrointestinal disorders in Egyptian children with autistic disorder. Res. Dev. Disabil. 36C: 485–490, https://doi.org/10.1016/j.ridd.2014.10.023.Search in Google Scholar PubMed

Albert, P.R. and Vahid-Ansari, F. (2019). The 5-HT1A receptor: signaling to behavior. Biochimie 161: 34–45, https://doi.org/10.1016/j.biochi.2018.10.015.Search in Google Scholar PubMed

Allan, A.M., Liang, X., Luo, Y., Pak, C., Li, X., Szulwach, K.E., Chen, D., Jin, P., and Zhao, X. (2008). The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum. Mol. Genet. 17: 2047–2057, https://doi.org/10.1093/hmg/ddn102.Search in Google Scholar PubMed PubMed Central

Al-Tawashi, A. and Gehring, C. (2013). Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability. Cell Commun. Signal. 11: 47, https://doi.org/10.1186/1478-811x-11-47.Search in Google Scholar PubMed PubMed Central

Amaral, D.G., Anderson, G.M., Bailey, A., Bernier, R., Bishop, S., Blatt, G., Canal-Bedia, R., Charman, T., Dawson, G., de Vries, P.J., et al.. (2019). Gaps in current autism research: the thoughts of the Autism Research Editorial Board and Associate Editors. Autism Res. 12: 700–714, https://doi.org/10.1002/aur.2101.Search in Google Scholar PubMed

Amodeo, D.A., Jones, J.H., Sweeney, J.A., and Ragozzino, M.E. (2014). Risperidone and the 5-HT2A receptor antagonist M100907 improve probabilistic reversal learning in BTBR T + tf/J mice. Autism Res. 7: 555–567, https://doi.org/10.1002/aur.1395.Search in Google Scholar PubMed PubMed Central

Amodeo, D.A., Oliver, B., Pahua, A., Hitchcock, K., Bykowski, A., Tice, D., Musleh, A., and Ryan, B.C. (2021). Serotonin 6 receptor blockade reduces repetitive behavior in the BTBR mouse model of autism spectrum disorder. Pharmacol. Biochem. Behav. 200: 173076, https://doi.org/10.1016/j.pbb.2020.173076.Search in Google Scholar PubMed

Amodeo, D.A., Rivera, E., Dunn, J.T., and Ragozzino, M.E. (2016). M100907 attenuates elevated grooming behavior in the BTBR mouse. Behav. Brain Res. 313: 67–70, https://doi.org/10.1016/j.bbr.2016.06.064.Search in Google Scholar PubMed

Andalib, S., Emamhadi, M.R., Yousefzadeh-Chabok, S., Shakouri, S.K., Hoilund-Carlsen, P.F., Vafaee, M.S., and Michel, T.M. (2017). Maternal SSRI exposure increases the risk of autistic offspring: a meta-analysis and systematic review. Eur. Psychiatr. 45: 161–166, https://doi.org/10.1016/j.eurpsy.2017.06.001.Search in Google Scholar PubMed

Anderson, G.M., Horne, W.C., Chatterjee, D., and Cohen, D.J. (1990). The hyperserotonemia of autism. Ann. N. Y. Acad. Sci. 600: 331–340; discussion 341–332, https://doi.org/10.1111/j.1749-6632.1990.tb16893.x.Search in Google Scholar PubMed

Andersson, M., Tangen, A., Farde, L., Bolte, S., Halldin, C., Borg, J., and Lundberg, J. (2021). Serotonin transporter availability in adults with autism-a positron emission tomography study. Mol. Psychiatr. 26: 1647–1658, https://doi.org/10.1038/s41380-020-00868-3.Search in Google Scholar PubMed PubMed Central

Bader, L.R., Carboni, J.D., Burleson, C.A., and Cooper, M.A. (2014). 5-HT1A receptor activation reduces fear-related behavior following social defeat in Syrian hamsters. Pharmacol. Biochem. Behav. 122: 182–190, https://doi.org/10.1016/j.pbb.2014.03.024.Search in Google Scholar PubMed PubMed Central

Bang-Andersen, B., Ruhland, T., Jorgensen, M., Smith, G., Frederiksen, K., Jensen, K.G., Zhong, H., Nielsen, S.M., Hogg, S., Mork, A., et al.. (2011). Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem. 54: 3206–3221, https://doi.org/10.1021/jm101459g.Search in Google Scholar PubMed

Barnes, N.M., Ahern, G.P., Becamel, C., Bockaert, J., Camilleri, M., Chaumont-Dubel, S., Claeysen, S., Cunningham, K.A., Fone, K.C., Gershon, M., et al.. (2021). International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol. Rev. 73: 310–520, https://doi.org/10.1124/pr.118.015552.Search in Google Scholar PubMed PubMed Central

Barnes, N.M. and Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152, https://doi.org/10.1016/s0028-3908(99)00010-6.Search in Google Scholar PubMed

Baronio, D., Chen, Y.C., and Panula, P. (2022). Abnormal brain development of monoamine oxidase mutant zebrafish and impaired social interaction of heterozygous fish. Dis. Model. Mech. 15: dmm04913, https://doi.org/10.1242/dmm.049133.Search in Google Scholar PubMed PubMed Central

Becamel, C., Figge, A., Poliak, S., Dumuis, A., Peles, E., Bockaert, J., Lubbert, H., and Ullmer, C. (2001). Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J. Biol. Chem. 276: 12974–12982, https://doi.org/10.1074/jbc.m008089200.Search in Google Scholar PubMed

Becamel, C., Gavarini, S., Chanrion, B., Alonso, G., Galeotti, N., Dumuis, A., Bockaert, J., and Marin, P. (2004). The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J. Biol. Chem. 279: 20257–20266, https://doi.org/10.1074/jbc.m312106200.Search in Google Scholar

Belokopytova, I.I., Kondaurova, E.M., Kulikova, E.A., Ilchibaeva, T.V., Naumenko, V.S., and Popova, N.K. (2022). Effects of the Cc2d1a/Freud-1 knockdown in the hippocampus of BTBR mice on the autistic-like behavior, expression of serotonin 5-HT(1A) and D2 dopamine receptors, and CREB and NF-kB intracellular signaling. Biochemistry (Mosc.) 87: 1206–1218, https://doi.org/10.1134/s0006297922100145.Search in Google Scholar

Beopoulos, A., Gea, M., Fasano, A., and Iris, F. (2022). Autism spectrum disorders pathogenesis: toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front. Neurosci. 16: 988735, https://doi.org/10.3389/fnins.2022.988735.Search in Google Scholar PubMed PubMed Central

Berthoux, C., Hamieh, A.M., Rogliardo, A., Doucet, E.L., Coudert, C., Ango, F., Grychowska, K., Chaumont-Dubel, S., Zajdel, P., Maldonado, R., et al.. (2020). Early 5-HT(6) receptor blockade prevents symptom onset in a model of adolescent cannabis abuse. EMBO Mol. Med. 12: e10605, https://doi.org/10.15252/emmm.201910605.Search in Google Scholar PubMed PubMed Central

Beversdorf, D.Q., Nordgren, R.E., Bonab, A.A., Fischman, A.J., Weise, S.B., Dougherty, D.D., Felopulos, G.J., Zhou, F.C., and Bauman, M.L. (2012). 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults. J. Neuropsychiatry Clin. Neurosci. 24: 191–197, https://doi.org/10.1176/appi.neuropsych.11080202.Search in Google Scholar PubMed

Boccitto, M., Doshi, S., Newton, I.P., Nathke, I., Neve, R., Dong, F., Mao, Y., Zhai, J., Zhang, L., and Kalb, R. (2016). Opposing actions of the synapse-associated protein of 97-kDa molecular weight (SAP97) and disrupted in schizophrenia 1 (DISC1) on Wnt/beta-catenin signaling. Neuroscience 326: 22–30, https://doi.org/10.1016/j.neuroscience.2016.03.048.Search in Google Scholar PubMed PubMed Central

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2008). 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology 55: 922–931, https://doi.org/10.1016/j.neuropharm.2008.05.013.Search in Google Scholar PubMed

Bockaert, J. and Marin, P. (2015). mTOR in brain physiology and pathologies. Physiol. Rev. 95: 1157–1187, https://doi.org/10.1152/physrev.00038.2014.Search in Google Scholar PubMed

Bortolato, M., Godar, S.C., Alzghoul, L., Zhang, J., Darling, R.D., Simpson, K.L., Bini, V., Chen, K., Wellman, C.L., Lin, R.C., et al.. (2013). Monoamine oxidase A and A/B knockout mice display autistic-like features. Int. J. Neuropsychopharmacol. 16: 869–888, https://doi.org/10.1017/s1461145712000715.Search in Google Scholar

Bove, M., Schiavone, S., Tucci, P., Sikora, V., Dimonte, S., Colia, A.L., Morgese, M.G., and Trabace, L. (2022). Ketamine administration in early postnatal life as a tool for mimicking autism spectrum disorders core symptoms. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 117: 110560, https://doi.org/10.1016/j.pnpbp.2022.110560.Search in Google Scholar PubMed

Bracken, M.B. (2019). SSRIs and autism: interpreting an umbrella review. Lancet Psychiatr. 6: 893, https://doi.org/10.1016/s2215-0366(19)30392-x.Search in Google Scholar

Buzzelli, V., Carbone, E., Manduca, A., Schiavi, S., Feo, A., Perederiy, J.V., Ambert, K.H., Hausman, M., and Trezza, V. (2023). Psilocybin mitigates the cognitive deficits observed in a rat model of Fragile X syndrome. Psychopharmacology (Berl.) 240: 137–147, https://doi.org/10.1007/s00213-022-06286-3.Search in Google Scholar PubMed

Canal, C.E., Felsing, D.E., Liu, Y., Zhu, W., Wood, J.T., Perry, C.K., Vemula, R., and Booth, R.G. (2015). An orally active phenylaminotetralin-chemotype serotonin 5-HT7 and 5-HT1A receptor partial agonist that corrects motor stereotypy in mouse models. ACS Chem. Neurosci. 6: 1259–1270, https://doi.org/10.1021/acschemneuro.5b00099.Search in Google Scholar PubMed

Cao, H., Tang, J., Liu, Q., Huang, J., and Xu, R. (2022). Autism-like behaviors regulated by the serotonin receptor 5-HT2B in the dorsal fan-shaped body neurons of Drosophila melanogaster. Eur. J. Med. Res. 27: 203, https://doi.org/10.1186/s40001-022-00838-1.Search in Google Scholar PubMed PubMed Central

Carouge, D., Host, L., Aunis, D., Zwiller, J., and Anglard, P. (2010). CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol. Dis. 38: 414–424, https://doi.org/10.1016/j.nbd.2010.02.014.Search in Google Scholar PubMed

Celada, P., Bortolozzi, A., and Artigas, F. (2013). Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27: 703–716, https://doi.org/10.1007/s40263-013-0071-0.Search in Google Scholar PubMed

Chadman, K.K. (2011). Fluoxetine but not risperidone increases sociability in the BTBR mouse model of autism. Pharmacol. Biochem. Behav. 97: 586–594, https://doi.org/10.1016/j.pbb.2010.09.012.Search in Google Scholar PubMed

Cho, I.H., Yoo, H.J., Park, M., Lee, Y.S., and Kim, S.A. (2007). Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Res. 1139: 34–41, https://doi.org/10.1016/j.brainres.2007.01.002.Search in Google Scholar PubMed

Christensen, D.L., Baio, J., Van Naarden Braun, K., Bilder, D., Charles, J., Constantino, J.N., Daniels, J., Durkin, M.S., Fitzgerald, R.T., Kurzius-Spencer, M., et al.. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years--autism and developmental disabilities monitoring network, 11 sites, United States, 2012. Morb. Mortal. Wkly. Rep. – Surveillance Summ. 65: 1–23, https://doi.org/10.15585/mmwr.ss6503a1.Search in Google Scholar PubMed PubMed Central

Chugani, D.C. (2004). Serotonin in autism and pediatric epilepsies. Ment. Retard. Dev. Disabil. Res. Rev. 10: 112–116, https://doi.org/10.1002/mrdd.20021.Search in Google Scholar PubMed

Chugani, D.C., Muzik, O., Rothermel, R., Behen, M., Chakraborty, P., Mangner, T., da Silva, E.A., and Chugani, H.T. (1997). Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann. Neurol. 42: 666–669, https://doi.org/10.1002/ana.410420420.Search in Google Scholar PubMed

Ciranna, L. and Catania, M.V. (2014). 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Front. Cell. Neurosci. 8: 250, https://doi.org/10.3389/fncel.2014.00250.Search in Google Scholar PubMed PubMed Central

Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S.F., Marin, P., Bockaert, J., Dumuis, A., and Claeysen, S. (2013). 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem. Neurosci. 4: 130–140, https://doi.org/10.1021/cn300095t.Search in Google Scholar PubMed PubMed Central

Coley, A.A. and Gao, W.J. (2018). PSD95: a synaptic protein implicated in schizophrenia or autism? Prog. Neuro Psychopharmacol. Biol. Psychiatr. 82: 187–194, https://doi.org/10.1016/j.pnpbp.2017.11.016.Search in Google Scholar PubMed PubMed Central

Costa, L., Sardone, L.M., Lacivita, E., Leopoldo, M., and Ciranna, L. (2015). Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome. Front. Behav. Neurosci. 9: 65, https://doi.org/10.3389/fnbeh.2015.00065.Search in Google Scholar PubMed PubMed Central

Costa, L., Spatuzza, M., D’Antoni, S., Bonaccorso, C.M., Trovato, C., Musumeci, S.A., Leopoldo, M., Lacivita, E., Catania, M.V., and Ciranna, L. (2012). Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol. Psychiatr. 72: 924–933, https://doi.org/10.1016/j.biopsych.2012.06.008.Search in Google Scholar PubMed

Costa, L., Tempio, A., Lacivita, E., Leopoldo, M., and Ciranna, L. (2021). Serotonin 5-HT7 receptors require cyclin-dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X syndrome. Eur. J. Neurosci. 54: 4124–4132, https://doi.org/10.1111/ejn.15246.Search in Google Scholar PubMed PubMed Central

Coupar, I.M., Desmond, P.V., and Irving, H.R. (2007). Human 5-HT(4) and 5-HT(7) receptor splice variants: are they important? Curr. Neuropharmacol. 5: 224–231, https://doi.org/10.2174/157015907782793621.Search in Google Scholar PubMed PubMed Central

De Filippis, B., Chiodi, V., Adriani, W., Lacivita, E., Mallozzi, C., Leopoldo, M., Domenici, M.R., Fuso, A., and Laviola, G. (2015). Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Front. Behav. Neurosci. 9: 86, https://doi.org/10.3389/fnbeh.2015.00086.Search in Google Scholar PubMed PubMed Central

De Filippis, B., Nativio, P., Fabbri, A., Ricceri, L., Adriani, W., Lacivita, E., Leopoldo, M., Passarelli, F., Fuso, A., and Laviola, G. (2014). Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology 39: 2506–2518, https://doi.org/10.1038/npp.2014.105.Search in Google Scholar PubMed PubMed Central

De Gregorio, R., Subah, G., Chan, J.C., Speranza, L., Zhang, X., Ramakrishnan, A., Shen, L., Maze, I., Stanton, P.K., and Sze, J.Y. (2022). Sex-biased effects on hippocampal circuit development by perinatal SERT expression in CA3 pyramidal neurons. Development 149: dev200549, https://doi.org/10.1242/dev.200549.Search in Google Scholar PubMed PubMed Central

Della Rocca, G.J., Mukhin, Y.V., Garnovskaya, M.N., Daaka, Y., Clark, G.J., Luttrell, L.M., Lefkowitz, R.J., and Raymond, J.R. (1999). Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J. Biol. Chem. 274: 4749–4753, https://doi.org/10.1074/jbc.274.8.4749.Search in Google Scholar PubMed

De Vry, J., Schreiber, R., Melon, C., Dalmus, M., and Jentzsch, K.R. (2004). 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur. Neuropsychopharmacol. 14: 487–495, https://doi.org/10.1016/j.euroneuro.2004.01.004.Search in Google Scholar PubMed

Donaldson, Z.R., Piel, D.A., Santos, T.L., Richardson-Jones, J., Leonardo, E.D., Beck, S.G., Champagne, F.A., and Hen, R. (2014). Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior. Neuropsychopharmacology 39: 291–302, https://doi.org/10.1038/npp.2013.185.Search in Google Scholar PubMed PubMed Central

Donovan, A.P. and Basson, M.A. (2017). The neuroanatomy of autism – a developmental perspective. J. Anat. 230: 4–15, https://doi.org/10.1111/joa.12542.Search in Google Scholar PubMed PubMed Central

Dudova, I., Horackova, K., Hrdlicka, M., and Balastik, M. (2020). Can maternal autoantibodies play an etiological role in ASD development? Neuropsychiatric Dis. Treat. 16: 1391–1398, https://doi.org/10.2147/ndt.s239504.Search in Google Scholar PubMed PubMed Central

Duman, R.S., Heninger, G.R., and Nestler, E.J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatr. 54: 597–606, https://doi.org/10.1001/archpsyc.1997.01830190015002.Search in Google Scholar PubMed

Dunn, J.T., Mroczek, J., Patel, H.R., and Ragozzino, M.E. (2020). Tandospirone, a partial 5-HT1A receptor agonist, administered systemically or into anterior cingulate attenuates repetitive behaviors in Shank3B mice. Int. J. Neuropsychopharmacol. 23: 533–542, https://doi.org/10.1093/ijnp/pyaa047.Search in Google Scholar PubMed PubMed Central

El-Merahbi, R., Loffler, M., Mayer, A., and Sumara, G. (2015). The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 589: 1728–1734, https://doi.org/10.1016/j.febslet.2015.05.054.Search in Google Scholar PubMed

Emberti Gialloreti, L. and Curatolo, P. (2018). Autism spectrum disorder: why do we know so little? Front. Neurol. 9: 670, https://doi.org/10.3389/fneur.2018.00670.Search in Google Scholar PubMed PubMed Central

Faigle, R. and Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta 1830: 2435–2448, https://doi.org/10.1016/j.bbagen.2012.09.002.Search in Google Scholar PubMed PubMed Central

Fujita, E., Tanabe, Y., Imhof, B.A., Momoi, M.Y., and Momoi, T. (2012). A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J. Neurochem. 123: 886–894, https://doi.org/10.1111/jnc.12022.Search in Google Scholar PubMed

Fujita-Jimbo, E., Tanabe, Y., Yu, Z., Kojima, K., Mori, M., Li, H., Iwamoto, S., Yamagata, T., Momoi, M.Y., and Momoi, T. (2015). The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis. Mol. Autism. 6: 17, https://doi.org/10.1186/s13229-015-0012-5.Search in Google Scholar PubMed PubMed Central

Gadow, K.D., Smith, R.M., and Pinsonneault, J.K. (2014). Serotonin 2A receptor gene (HTR2A) regulatory variants: possible association with severity of depression symptoms in children with autism spectrum disorder. Cognit. Behav. Neurol. 27: 107–116, https://doi.org/10.1097/wnn.0000000000000028.Search in Google Scholar

Garbarino, V.R., Gilman, T.L., Daws, L.C., and Gould, G.G. (2019). Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol. Res. 140: 85–99, https://doi.org/10.1016/j.phrs.2018.07.010.Search in Google Scholar PubMed PubMed Central

Gassowska-Dobrowolska, M., Kolasa-Wolosiuk, A., Cieslik, M., Dominiak, A., Friedland, K., and Adamczyk, A. (2021). Alterations in tau protein level and phosphorylation state in the brain of the autistic-like rats induced by prenatal exposure to valproic acid. Int. J. Mol. Sci. 22: 3209, https://doi.org/10.3390/ijms22063209.Search in Google Scholar PubMed PubMed Central

Gill, R.K., Saksena, S., Tyagi, S., Alrefai, W.A., Malakooti, J., Sarwar, Z., Turner, J.R., Ramaswamy, K., and Dudeja, P.K. (2005). Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology 128: 962–974, https://doi.org/10.1053/j.gastro.2005.02.011.Search in Google Scholar PubMed

Girgis, R.R., Slifstein, M., Xu, X., Frankle, W.G., Anagnostou, E., Wasserman, S., Pepa, L., Kolevzon, A., Abi-Dargham, A., Laruelle, M., et al.. (2011). The 5-HT(2A) receptor and serotonin transporter in Asperger’s disorder: a PET study with [(1)(1)C]MDL 100907 and [(1)(1)C]DASB. Psychiatr. Res. 194: 230–234, https://doi.org/10.1016/j.pscychresns.2011.04.007.Search in Google Scholar PubMed PubMed Central

Glatt, C.E., DeYoung, J.A., Delgado, S., Service, S.K., Giacomini, K.M., Edwards, R.H., Risch, N., and Freimer, N.B. (2001). Screening a large reference sample to identify very low frequency sequence variants: comparisons between two genes. Nat. Genet. 27: 435–438, https://doi.org/10.1038/86948.Search in Google Scholar PubMed

Glikmann-Johnston, Y., Saling, M.M., Reutens, D.C., and Stout, J.C. (2015). Hippocampal 5-HT1A receptor and spatial learning and memory. Front. Pharmacol. 6: 289, https://doi.org/10.3389/fphar.2015.00289.Search in Google Scholar PubMed PubMed Central

Gould, G.G., Hensler, J.G., Burke, T.F., Benno, R.H., Onaivi, E.S., and Daws, L.C. (2011). Density and function of central serotonin (5-HT) transporters, 5-HT1A and 5-HT2A receptors, and effects of their targeting on BTBR T+tf/J mouse social behavior. J. Neurochem. 116: 291–303, https://doi.org/10.1111/j.1471-4159.2010.07104.x.Search in Google Scholar PubMed PubMed Central

Gu, F., Chauhan, V., and Chauhan, A. (2017). Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J. Neurosci. Res. 95: 1965–1972, https://doi.org/10.1002/jnr.24027.Search in Google Scholar PubMed

Guo, Y.P. and Commons, K.G. (2017). Serotonin neuron abnormalities in the BTBR mouse model of autism. Autism Res. 10: 66–77, https://doi.org/10.1002/aur.1665.Search in Google Scholar PubMed PubMed Central

Gupta, P., Uner, O.E., Nayak, S., Grant, G.R., and Kalb, R.G. (2018). SAP97 regulates behavior and expression of schizophrenia risk enriched gene sets in mouse hippocampus. PLoS One 13: e0200477, https://doi.org/10.1371/journal.pone.0200477.Search in Google Scholar PubMed PubMed Central

Harro, J. and Oreland, L. (1996). Depression as a spreading neuronal adjustment disorder. Eur. Neuropsychopharmacol. 6: 207–223, https://doi.org/10.1016/0924-977x(96)00022-3.Search in Google Scholar PubMed

Hollander, E., Soorya, L., Chaplin, W., Anagnostou, E., Taylor, B.P., Ferretti, C.J., Wasserman, S., Swanson, E., and Settipani, C. (2012). A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am. J. Psychiatr. 169: 292–299, https://doi.org/10.1176/appi.ajp.2011.10050764.Search in Google Scholar PubMed

Hranilovic, D., Blazevic, S., Babic, M., Smurinic, M., Bujas-Petkovic, Z., and Jernej, B. (2010). 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder. Psychiatr. Res. 178: 556–558, https://doi.org/10.1016/j.psychres.2010.04.007.Search in Google Scholar PubMed

Huang, L., Wang, J., Liang, G., Gao, Y., Jin, S.Y., Hu, J., Yang, X., Lao, J., Chen, J., Luo, Z.C., et al.. (2021). Upregulated NMDAR-mediated GABAergic transmission underlies autistic-like deficits in Htr3a knockout mice. Theranostics 11: 9296–9310, https://doi.org/10.7150/thno.60531.Search in Google Scholar PubMed PubMed Central

Hutsler, J.J. and Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309: 83–94, https://doi.org/10.1016/j.brainres.2009.09.120.Search in Google Scholar PubMed

Hviid, A., Melbye, M., and Pasternak, B. (2013). Use of selective serotonin reuptake inhibitors during pregnancy and risk of autism. N. Engl. J. Med. 369: 2406–2415, https://doi.org/10.1056/nejmoa1301449.Search in Google Scholar PubMed

Ide, S., Itoh, M., and Goto, Y. (2005). Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse. Neurosci. Lett. 386: 14–17, https://doi.org/10.1016/j.neulet.2005.05.056.Search in Google Scholar PubMed

Isoda, K., Morimoto, M., Matsui, F., Hasegawa, T., Tozawa, T., Morioka, S., Chiyonobu, T., Nishimura, A., Yoshimoto, K., and Hosoi, H. (2010). Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice. Neuroscience 165: 1254–1260, https://doi.org/10.1016/j.neuroscience.2009.11.036.Search in Google Scholar PubMed

Israelyan, N. and Margolis, K.G. (2018). Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol. Res. 132: 1–6, https://doi.org/10.1016/j.phrs.2018.03.020.Search in Google Scholar PubMed PubMed Central

Jacob, J., Ribes, V., Moore, S., Constable, S.C., Sasai, N., Gerety, S.S., Martin, D.J., Sergeant, C.P., Wilkinson, D.G., and Briscoe, J. (2014). Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis. Model. Mech. 7: 107–117, https://doi.org/10.1242/dmm.013219.Search in Google Scholar PubMed PubMed Central

Jans, L.A., Riedel, W.J., Markus, C.R., and Blokland, A. (2007). Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol. Psychiatr. 12: 522–543, https://doi.org/10.1038/sj.mp.4001920.Search in Google Scholar PubMed

Jeong, J., Li, Y., and Roche, K.W. (2021). CaMKII phosphorylation regulates synaptic enrichment of Shank3. eNeuro 8: 0481–20, https://doi.org/10.1523/eneuro.0481-20.2021.Search in Google Scholar PubMed PubMed Central

Jessberger, S., Gage, F.H., Eisch, A.J., and Lagace, D.C. (2009). Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends Neurosci. 32: 575–582, https://doi.org/10.1016/j.tins.2009.07.002.Search in Google Scholar PubMed PubMed Central

Ji, S.P., Zhang, Y., Van Cleemput, J., Jiang, W., Liao, M., Li, L., Wan, Q., Backstrom, J.R., and Zhang, X. (2006). Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat. Med. 12: 324–329, https://doi.org/10.1038/nm1349.Search in Google Scholar PubMed

Johnston, A.L. and File, S.E. (1986). 5-HT and anxiety: promises and pitfalls. Pharmacol. Biochem. Behav. 24: 1467–1470, https://doi.org/10.1016/0091-3057(86)90213-3.Search in Google Scholar PubMed

Kawamoto, A., Kajiume, A., Yoshida, H., Toshima, T., and Kobayashi, M. (2021). Individual differences in autistic traits are associated with serotonin transporter gene polymorphism through medial prefrontal function: a study using NIRS. Neuroscience 458: 43–53, https://doi.org/10.1016/j.neuroscience.2021.01.007.Search in Google Scholar PubMed

Khatri, N., Simpson, K.L., Lin, R.C., and Paul, I.A. (2014). Lasting neurobehavioral abnormalities in rats after neonatal activation of serotonin 1A and 1B receptors: possible mechanisms for serotonin dysfunction in autistic spectrum disorders. Psychopharmacology (Berl.) 231: 1191–1200, https://doi.org/10.1007/s00213-013-3242-2.Search in Google Scholar PubMed PubMed Central

Khodaverdi, M., Rahdar, M., Davoudi, S., Hajisoltani, R., Tavassoli, Z., Ghasemi, Z., Amini, A.E., Hosseinmardi, N., Behzadi, G., and Janahmadi, M. (2021). 5-HT7 receptor activation rescues impaired synaptic plasticity in an autistic-like rat model induced by prenatal VPA exposure. Neurobiol. Learn. Mem. 183: 107462, https://doi.org/10.1016/j.nlm.2021.107462.Search in Google Scholar PubMed

King, B.H., Hollander, E., Sikich, L., McCracken, J.T., Scahill, L., Bregman, J.D., Donnelly, C.L., Anagnostou, E., Dukes, K., Sullivan, L., et al.. (2009). Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism. Arch. Gen. Psychiatr. 66: 583–590, https://doi.org/10.1001/archgenpsychiatry.2009.30.Search in Google Scholar PubMed PubMed Central

Knight, J.A., Smith, C., Toohey, N., Klein, M.T., and Teitler, M. (2009). Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-OH-risperidone, and other inactivating antagonists. Mol. Pharmacol. 75: 374–380, https://doi.org/10.1124/mol.108.052084.Search in Google Scholar PubMed PubMed Central

Kondaurova, E.M., Belokopytova, I.I., Kulikova, E.A., Khotskin, N.V., Ilchibaeva, T.V., Tsybko, A.S., Popova, N.K., and Naumenko, V.S. (2022). On the role of serotonin 5-HT(1A) receptor in autistic-like behavior: small es, cyrillicross talk of 5-HT and BDNF systems. Behav. Brain Res. 438: 114168, https://doi.org/10.1016/j.bbr.2022.114168.Search in Google Scholar PubMed

Kondaurova, E.M., Plyusnina, A.V., Ilchibaeva, T.V., Eremin, D.V., Rodnyy, A.Y., Grygoreva, Y.D., and Naumenko, V.S. (2021). Effects of a Cc2d1a/Freud-1 knockdown in the hippocampus on behavior, the serotonin system, and BDNF. Int. J. Mol. Sci. 22: 13319, https://doi.org/10.3390/ijms222413319.Search in Google Scholar PubMed PubMed Central

Kuo, H.Y. and Liu, F.C. (2022). Pathophysiological studies of monoaminergic neurotransmission systems in valproic acid-induced model of autism spectrum disorder. Biomedicines 10: 560, https://doi.org/10.3390/biomedicines10030560.Search in Google Scholar PubMed PubMed Central

Kvachnina, E., Liu, G., Dityatev, A., Renner, U., Dumuis, A., Richter, D.W., Dityateva, G., Schachner, M., Voyno-Yasenetskaya, T.A., and Ponimaskin, E.G. (2005). 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J. Neurosci. 25: 7821–7830, https://doi.org/10.1523/jneurosci.1790-05.2005.Search in Google Scholar PubMed PubMed Central

Labus, J., Rohrs, K.F., Ackmann, J., Varbanov, H., Muller, F.E., Jia, S., Jahreis, K., Vollbrecht, A.L., Butzlaff, M., Schill, Y., et al.. (2021). Amelioration of tau pathology and memory deficits by targeting 5-HT7 receptor. Prog. Neurobiol. 197: 101900, https://doi.org/10.1016/j.pneurobio.2020.101900.Search in Google Scholar PubMed

Lacivita, E., Niso, M., Mastromarino, M., Garcia Silva, A., Resch, C., Zeug, A., Loza, M.I., Castro, M., Ponimaskin, E., and Leopoldo, M. (2021). Knowledge-based design of long-chain arylpiperazine derivatives targeting multiple serotonin receptors as potential candidates for treatment of autism spectrum disorder. ACS Chem. Neurosci. 12: 1313–1327, https://doi.org/10.1021/acschemneuro.0c00647.Search in Google Scholar PubMed

Larke, R.H., Maninger, N., Ragen, B.J., Mendoza, S.P., and Bales, K.L. (2016). Serotonin 1A agonism decreases affiliative behavior in pair-bonded titi monkeys. Horm. Behav. 86: 71–77, https://doi.org/10.1016/j.yhbeh.2016.10.001.Search in Google Scholar PubMed PubMed Central

Lawson, S.K., Gray, A.C., and Woehrle, N.S. (2016). Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice. Behav. Brain Res. 314: 52–64, https://doi.org/10.1016/j.bbr.2016.07.027.Search in Google Scholar PubMed

Leboyer, M., Philippe, A., Bouvard, M., Guilloud-Bataille, M., Bondoux, D., Tabuteau, F., Feingold, J., Mouren-Simeoni, M.C., and Launay, J.M. (1999). Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatr. 45: 158–163, https://doi.org/10.1016/s0006-3223(97)00532-5.Search in Google Scholar PubMed

Lee, A., Choo, H., and Jeon, B. (2022). Serotonin receptors as therapeutic targets for autism spectrum disorder treatment. Int. J. Mol. Sci. 23: 6515, https://doi.org/10.3390/ijms23126515.Search in Google Scholar PubMed PubMed Central

Lee, J., Avramets, D., Jeon, B., and Choo, H. (2021). Modulation of serotonin receptors in neurodevelopmental disorders: focus on 5-HT7 receptor. Molecules 26: 3348, https://doi.org/10.3390/molecules26113348.Search in Google Scholar PubMed PubMed Central

Lefevre, A., Richard, N., Mottolese, R., Leboyer, M., and Sirigu, A. (2020). An association between serotonin 1A receptor, gray matter volume, and sociability in healthy subjects and in autism spectrum disorder. Autism Res. 13: 1843–1855, https://doi.org/10.1002/aur.2360.Search in Google Scholar PubMed

Levy, N.S., Umanah, G.K.E., Rogers, E.J., Jada, R., Lache, O., and Levy, A.P. (2019). IQSEC2-associated intellectual disability and autism. Int. J. Mol. Sci. 20: 3038, https://doi.org/10.3390/ijms20123038.Search in Google Scholar PubMed PubMed Central

Lim, C.S., Hoang, E.T., Viar, K.E., Stornetta, R.L., Scott, M.M., and Zhu, J.J. (2014). Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a Fragile X model. Genes Dev. 28: 273–289, https://doi.org/10.1101/gad.232470.113.Search in Google Scholar PubMed PubMed Central

Loebel, A., Brams, M., Goldman, R.S., Silva, R., Hernandez, D., Deng, L., Mankoski, R., and Findling, R.L. (2016). Lurasidone for the treatment of irritability associated with autistic disorder. J. Autism Dev. Disord. 46: 1153–1163, https://doi.org/10.1007/s10803-015-2628-x.Search in Google Scholar PubMed PubMed Central

Lugo-Candelas, C., Cha, J., Hong, S., Bastidas, V., Weissman, M., Fifer, W.P., Myers, M., Talati, A., Bansal, R., Peterson, B.S., et al.. (2018). Associations between brain structure and connectivity in infants and exposure to selective serotonin reuptake inhibitors during pregnancy. JAMA Pediatr. 172: 525–533, https://doi.org/10.1001/jamapediatrics.2017.5227.Search in Google Scholar PubMed PubMed Central

Mahony, C. and O’Ryan, C. (2021). Convergent canonical pathways in autism spectrum disorder from proteomic, transcriptomic and DNA methylation data. Int. J. Mol. Sci. 22: 10757, https://doi.org/10.3390/ijms221910757.Search in Google Scholar PubMed PubMed Central

Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M.M., and Kuikka, J.T. (2008). Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev. Med. Child Neurol. 50: 593–597, https://doi.org/10.1111/j.1469-8749.2008.03027.x.Search in Google Scholar PubMed

Mao, Y., Xing, Y., Li, J., Dong, D., Zhang, S., Zhao, Z., Xie, J., Wang, R., and Li, H. (2021). Guanosine ameliorates positive symptoms of schizophrenia via modulating 5-HT1A and 5-HT2A receptors. Am. J. Transl. Res. 13: 4040–4054.Search in Google Scholar

Marcello, E., Borroni, B., Pelucchi, S., Gardoni, F., and Di Luca, M. (2017). ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer’s disease. Expert Opin. Ther. Targets 21: 1017–1026, https://doi.org/10.1080/14728222.2017.1386176.Search in Google Scholar PubMed

Margolis, K.G., Li, Z., Stevanovic, K., Saurman, V., Israelyan, N., Anderson, G.M., Snyder, I., Veenstra-VanderWeele, J., Blakely, R.D., and Gershon, M.D. (2016). Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J. Clin. Invest. 126: 2221–2235, https://doi.org/10.1172/jci84877.Search in Google Scholar

Marinho, L.S.R., Chiarantin, G.M.D., Ikebara, J.M., Cardoso, D.S., de Lima-Vasconcellos, T.H., Higa, G.S.V., Ferraz, M.S.A., De Pasquale, R., Takada, S.H., Papes, F., et al.. (2023). The impact of antidepressants on human neurodevelopment: brain organoids as experimental tools. Semin. Cell Dev. Biol. 144: 67–76, https://doi.org/10.1016/j.semcdb.2022.09.007.Search in Google Scholar PubMed

Masi, A., DeMayo, M.M., Glozier, N., and Guastella, A.J. (2017). An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci. Bull. 33: 183–193, https://doi.org/10.1007/s12264-017-0100-y.Search in Google Scholar PubMed PubMed Central

Mathew, S., Bichenapally, S., Khachatryan, V., Muazzam, A., Hamal, C., Velugoti, L., Tabowei, G., Gaddipati, G.N., Mukhtar, M., Alzubaidee, M.J., et al.. (2022). Role of serotoninergic antidepressants in the development of autism spectrum disorders: a systematic review. Cureus 14: e28505, https://doi.org/10.7759/cureus.28505.Search in Google Scholar PubMed PubMed Central

Matiiv, A.B., Moskalenko, S.E., Sergeeva, O.S., Zhouravleva, G.A., and Bondarev, S.A. (2022). NOS1AP interacts with alpha-synuclein and aggregates in yeast and mammalian cells. Int. J. Mol. Sci. 23: 9102, https://doi.org/10.3390/ijms23169102.Search in Google Scholar PubMed PubMed Central

Meffre, J., Chaumont-Dubel, S., Mannoury la Cour, C., Loiseau, F., Watson, D.J., Dekeyne, A., Seveno, M., Rivet, J.M., Gaven, F., Deleris, P., et al.. (2012). 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol. Med. 4: 1043–1056, https://doi.org/10.1002/emmm.201201410.Search in Google Scholar PubMed PubMed Central

Meinke, C., Quinlan, M.A., Paffenroth, K.C., Harrison, F.E., Fenollar-Ferrer, C., Katamish, R.M., Stillman, I., Ramamoorthy, S., and Blakely, R.D. (2022). Serotonin transporter Ala276 mouse: novel model to assess the neurochemical and behavioral impact of Thr276 phosphorylation in vivo. Neurochem. Res. 47: 37–60, https://doi.org/10.1007/s11064-021-03299-w.Search in Google Scholar PubMed

Mohler, E.G., Baker, P.M., Gannon, K.S., Jones, S.S., Shacham, S., Sweeney, J.A., and Ragozzino, M.E. (2012). The effects of PRX-07034, a novel 5-HT6 antagonist, on cognitive flexibility and working memory in rats. Psychopharmacology (Berl.) 220: 687–696, https://doi.org/10.1007/s00213-011-2518-7.Search in Google Scholar PubMed PubMed Central

Mosienko, V., Beis, D., Alenina, N., and Wohr, M. (2015). Reduced isolation-induced pup ultrasonic communication in mouse pups lacking brain serotonin. Mol. Autism. 6: 13, https://doi.org/10.1186/s13229-015-0003-6.Search in Google Scholar PubMed PubMed Central

Moy, S.S., Riddick, N.V., Nikolova, V.D., Teng, B.L., Agster, K.L., Nonneman, R.J., Young, N.B., Baker, L.K., Nadler, J.J., and Bodfish, J.W. (2014). Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav. Brain Res. 259: 200–214, https://doi.org/10.1016/j.bbr.2013.10.052.Search in Google Scholar PubMed PubMed Central

Muller, C.L., Anacker, A.M.J., and Veenstra-VanderWeele, J. (2016). The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321: 24–41, https://doi.org/10.1016/j.neuroscience.2015.11.010.Search in Google Scholar PubMed PubMed Central

Murphy, D.G., Daly, E., Schmitz, N., Toal, F., Murphy, K., Curran, S., Erlandsson, K., Eersels, J., Kerwin, R., Ell, P., et al.. (2006). Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study. Am. J. Psychiatr. 163: 934–936, https://doi.org/10.1176/ajp.2006.163.5.934.Search in Google Scholar PubMed

Myers, S.M., Johnson, C.P.,. and American Academy of Pediatrics Council on Children With Disabilities (2007). Management of children with autism spectrum disorders. Pediatrics 120: 1162–1182, https://doi.org/10.1542/peds.2007-2362.Search in Google Scholar PubMed

Nadeau, J., Sulkowski, M.L., Ung, D., Wood, J.J., Lewin, A.B., Murphy, T.K., May, J.E., and Storch, E.A. (2011). Treatment of comorbid anxiety and autism spectrum disorders. Neuropsychiatry (London) 1: 567–578, https://doi.org/10.2217/npy.11.62.Search in Google Scholar PubMed PubMed Central

Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. (2008). Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol. Cell. Biol. 28: 5996–6009, https://doi.org/10.1128/mcb.00114-08.Search in Google Scholar PubMed PubMed Central

Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K.J., Sugihara, G., Iwata, Y., Suzuki, K., et al.. (2010). Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gen. Psychiatr. 67: 59–68, https://doi.org/10.1001/archgenpsychiatry.2009.137.Search in Google Scholar PubMed

Naumenko, V.S., Popova, N.K., Lacivita, E., Leopoldo, M., and Ponimaskin, E.G. (2014). Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther. 20: 582–590, https://doi.org/10.1111/cns.12247.Search in Google Scholar PubMed PubMed Central

Oblak, A., Gibbs, T.T., and Blatt, G.J. (2013). Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism. Autism Res. 6: 571–583, https://doi.org/10.1002/aur.1317.Search in Google Scholar PubMed PubMed Central

Ohkawara, T., Katsuyama, T., Ida-Eto, M., Narita, N., and Narita, M. (2015). Maternal viral infection during pregnancy impairs development of fetal serotonergic neurons. Brain Dev. 37: 88–93, https://doi.org/10.1016/j.braindev.2014.03.007.Search in Google Scholar PubMed

O’Reilly, K.C., Anacker, A.M.J., Rogers, T.D., Forsberg, C.G., Wang, J., Zhang, B., Blakely, R.D., and Veenstra-VanderWeele, J. (2020). A social encounter drives gene expression changes linked to neuronal function, brain development, and related disorders in mice expressing the serotonin transporter Ala56 variant. Neurosci. Lett. 730: 135027, https://doi.org/10.1016/j.neulet.2020.135027.Search in Google Scholar PubMed PubMed Central

Ormazabal, A., Artuch, R., Vilaseca, M.A., Aracil, A., and Pineda, M. (2005). Cerebrospinal fluid concentrations of folate, biogenic amines and pterins in Rett syndrome: treatment with folinic acid. Neuropediatrics 36: 380–385, https://doi.org/10.1055/s-2005-873078.Search in Google Scholar PubMed

Ortiz-Mantilla, S., Choe, M.S., Flax, J., Grant, P.E., and Benasich, A.A. (2010). Associations between the size of the amygdala in infancy and language abilities during the preschool years in normally developing children. Neuroimage 49: 2791–2799, https://doi.org/10.1016/j.neuroimage.2009.10.029.Search in Google Scholar PubMed

Ou, X.M., Lemonde, S., Jafar-Nejad, H., Bown, C.D., Goto, A., Rogaeva, A., and Albert, P.R. (2003). Freud-1: a neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J. Neurosci. 23: 7415–7425, https://doi.org/10.1523/jneurosci.23-19-07415.2003.Search in Google Scholar PubMed PubMed Central

Overstreet, D.H., Commissaris, R.C., De La Garza, R.2nd, File, S.E., Knapp, D.J., and Seiden, L.S. (2003). Involvement of 5-HT1A receptors in animal tests of anxiety and depression: evidence from genetic models. Stress 6: 101–110, https://doi.org/10.1080/1025389031000111311.Search in Google Scholar PubMed

Oyabu, A., Narita, M., and Tashiro, Y. (2013). The effects of prenatal exposure to valproic acid on the initial development of serotonergic neurons. Int. J. Dev. Neurosci. 31: 202–208, https://doi.org/10.1016/j.ijdevneu.2013.01.006.Search in Google Scholar PubMed

Padmakumar, M., Van Raes, E., Van Geet, C., and Freson, K. (2019). Blood platelet research in autism spectrum disorders: in search of biomarkers. Res. Pract. Thromb. Haemostasis 3: 566–577, https://doi.org/10.1002/rth2.12239.Search in Google Scholar PubMed PubMed Central

Panayotis, N., Ghata, A., Villard, L., and Roux, J.C. (2011). Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain. BMC Neurosci. 12: 47, https://doi.org/10.1186/1471-2202-12-47.Search in Google Scholar PubMed PubMed Central

Pang, S., Luo, Z., Dong, W., Gao, S., Chen, W., Liu, N., Zhang, X., Gao, X., Li, J., Gao, K., et al.. (2023). Integrin beta1/FAK/SRC signal pathway is involved in autism spectrum disorder in Tspan7 knockout rats. Life Sci. Alliance 6: e202201616, https://doi.org/10.26508/lsa.202201616.Search in Google Scholar PubMed PubMed Central

Persico, A.M., Ricciardello, A., Lamberti, M., Turriziani, L., Cucinotta, F., Brogna, C., Vitiello, B., and Arango, C. (2021). The pediatric psychopharmacology of autism spectrum disorder: a systematic review – Part I: the past and the present. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 110: 110326, https://doi.org/10.1016/j.pnpbp.2021.110326.Search in Google Scholar PubMed

Popova, N.K. (2006). From genes to aggressive behavior: the role of serotonergic system. Bioessays 28: 495–503, https://doi.org/10.1002/bies.20412.Search in Google Scholar PubMed

Popova, N.K. and Amstislavskaya, T.G. (2002). Involvement of the 5-HT(1A) and 5-HT(1B) serotonergic receptor subtypes in sexual arousal in male mice. Psychoneuroendocrinology 27: 609–618, https://doi.org/10.1016/s0306-4530(01)00097-x.Search in Google Scholar PubMed

Popova, N.K., Naumenko, E.V., and Kolpakov, V.G. (1978). Serotonin and behavior. Nauka, Novosibirsk.Search in Google Scholar

Popova, N.K. and Naumenko, V.S. (2013). 5-HT1A receptor as a key player in the brain 5-HT system. Rev. Neurosci. 24: 191–204, https://doi.org/10.1515/revneuro-2012-0082.Search in Google Scholar PubMed

Popova, N.K. and Naumenko, V.S. (2019). Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets 23: 227–239, https://doi.org/10.1080/14728222.2019.1572747.Search in Google Scholar PubMed

Popova, N.K., Tsybko, A.S., and Naumenko, V.S. (2022). The implication of 5-HT receptor family members in aggression, depression and suicide: similarity and difference. Int. J. Mol. Sci. 23: 8814, https://doi.org/10.3390/ijms23158814.Search in Google Scholar PubMed PubMed Central

Pourhamzeh, M., Moravej, F.G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R., Ahadi, R., and Joghataei, M.T. (2022). The roles of serotonin in neuropsychiatric disorders. Cell. Mol. Neurobiol. 42: 1671–1692, https://doi.org/10.1007/s10571-021-01064-9.Search in Google Scholar PubMed

Prasad, H.C., Steiner, J.A., Sutcliffe, J.S., and Blakely, R.D. (2009). Enhanced activity of human serotonin transporter variants associated with autism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364: 163–173, https://doi.org/10.1098/rstb.2008.0143.Search in Google Scholar PubMed PubMed Central

Rademacher, S. and Eickholt, B.J. (2019). PTEN in autism and neurodevelopmental disorders. Cold Spring Harbor Perspect. Med. 9: a036780, https://doi.org/10.1101/cshperspect.a036780.Search in Google Scholar PubMed PubMed Central

Ramaekers, V.T., Hansen, S.I., Holm, J., Opladen, T., Senderek, J., Hausler, M., Heimann, G., Fowler, B., Maiwald, R., and Blau, N. (2003). Reduced folate transport to the CNS in female Rett patients. Neurology 61: 506–515, https://doi.org/10.1212/01.wnl.0000078939.64774.1b.Search in Google Scholar PubMed

Rebello, T.J., Yu, Q., Goodfellow, N.M., Caffrey Cagliostro, M.K., Teissier, A., Morelli, E., Demireva, E.Y., Chemiakine, A., Rosoklija, G.B., Dwork, A.J., et al.. (2014). Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function. J. Neurosci. 34: 12379–12393, https://doi.org/10.1523/jneurosci.1020-13.2014.Search in Google Scholar

Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Frohlich, M., et al.. (2012). Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci. 125: 2486–2499, https://doi.org/10.1242/jcs.101337.Search in Google Scholar PubMed

Riccio, O., Jacobshagen, M., Golding, B., Vutskits, L., Jabaudon, D., Hornung, J.P., and Dayer, A.G. (2011). Excess of serotonin affects neocortical pyramidal neuron migration. Transl. Psychiatry 1: e47, https://doi.org/10.1038/tp.2011.49.Search in Google Scholar PubMed PubMed Central

Ristori, M.V., Quagliariello, A., Reddel, S., Ianiro, G., Vicari, S., Gasbarrini, A., and Putignani, L. (2019). Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients 11: 2812, https://doi.org/10.3390/nu11112812.Search in Google Scholar PubMed PubMed Central

Rodnyy, A.Y., Kulikova, E.A., Kondaurova, E.M., and Naumenko, V.S. (2021). Serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors in the brain of the BTBR mouse the model of autism. Neurochem. J. 15: 42–49, https://doi.org/10.1134/s1819712421010098.Search in Google Scholar

Rolf, L.H., Haarmann, F.Y., Grotemeyer, K.H., and Kehrer, H. (1993). Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr. Scand. 87: 312–316, https://doi.org/10.1111/j.1600-0447.1993.tb03378.x.Search in Google Scholar PubMed

Rylaarsdam, L. and Guemez-Gamboa, A. (2019). Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13: 385, https://doi.org/10.3389/fncel.2019.00385.Search in Google Scholar PubMed PubMed Central

Saitow, F., Takumi, T., and Suzuki, H. (2020a). Change in serotonergic modulation contributes to the synaptic imbalance of neuronal circuit at the prefrontal cortex in the 15q11-13 duplication mouse model of autism. Neuropharmacology 165: 107931, https://doi.org/10.1016/j.neuropharm.2019.107931.Search in Google Scholar PubMed

Saitow, F., Takumi, T., and Suzuki, H. (2020b). Upregulated 5-HT(1A) receptor-mediated currents in the prefrontal cortex layer 5 neurons in the 15q11-13 duplication mouse model of autism. Mol. Brain 13: 115, https://doi.org/10.1186/s13041-020-00655-9.Search in Google Scholar PubMed PubMed Central

Santos, M., Summavielle, T., Teixeira-Castro, A., Silva-Fernandes, A., Duarte-Silva, S., Marques, F., Martins, L., Dierssen, M., Oliveira, P., Sousa, N., et al.. (2010). Monoamine deficits in the brain of methyl-CpG binding protein 2 null mice suggest the involvement of the cerebral cortex in early stages of Rett syndrome. Neuroscience 170: 453–467, https://doi.org/10.1016/j.neuroscience.2010.07.010.Search in Google Scholar PubMed

Schain, R.J. and Freedman, D.X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J. Pediatr. 58: 315–320, https://doi.org/10.1016/s0022-3476(61)80261-8.Search in Google Scholar PubMed

Schreiber, R. and De Vry, J. (1993). Neuronal circuits involved in the anxiolytic effects of the 5-HT1A receptor agonists 8-OH-DPAT ipsapirone and buspirone in the rat. Eur. J. Pharmacol. 249: 341–351, https://doi.org/10.1016/0014-2999(93)90531-l.Search in Google Scholar PubMed

Sejourne, J., Llaneza, D., Kuti, O.J., and Page, D.T. (2015). Social behavioral deficits coincide with the onset of seizure susceptibility in mice lacking serotonin receptor 2c. PLoS One 10: e0136494, https://doi.org/10.1371/journal.pone.0136494.Search in Google Scholar PubMed PubMed Central

Sharp, T. and Barnes, N.M. (2020). Central 5-HT receptors and their function; present and future. Neuropharmacology 177: 108155, https://doi.org/10.1016/j.neuropharm.2020.108155.Search in Google Scholar PubMed

Shillingsburg, M.A., Hansen, B., and Wright, M. (2019). Rapport building and instructional fading prior to discrete trial instruction: moving from child-led play to intensive teaching. Behav. Modif. 43: 288–306, https://doi.org/10.1177/0145445517751436.Search in Google Scholar PubMed

Siemann, J.K., Muller, C.L., Forsberg, C.G., Blakely, R.D., Veenstra-VanderWeele, J., and Wallace, M.T. (2017). An autism-associated serotonin transporter variant disrupts multisensory processing. Transl. Psychiatry 7: e1067, https://doi.org/10.1038/tp.2017.17.Search in Google Scholar PubMed PubMed Central

Singh, A.S., Chandra, R., Guhathakurta, S., Sinha, S., Chatterjee, A., Ahmed, S., Ghosh, S., and Rajamma, U. (2013). Genetic association and gene-gene interaction analyses suggest likely involvement of ITGB3 and TPH2 with autism spectrum disorder (ASD) in the Indian population. Prog. Neuro Psychopharmacol. Biol. Psychiatr. 45: 131–143, https://doi.org/10.1016/j.pnpbp.2013.04.015.Search in Google Scholar PubMed

Singh, C., Bortolato, M., Bali, N., Godar, S.C., Scott, A.L., Chen, K., Thompson, R.F., and Shih, J.C. (2013). Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. Proc. Natl. Acad. Sci. U. S. A. 110: 12816–12821, https://doi.org/10.1073/pnas.1308037110.Search in Google Scholar PubMed PubMed Central

Smith, C., Toohey, N., Knight, J.A., Klein, M.T., and Teitler, M. (2011). Risperidone-induced inactivation and clozapine-induced reactivation of rat cortical astrocyte 5-hydroxytryptamine(7) receptors: evidence for in situ G protein-coupled receptor homodimer protomer cross-talk. Mol. Pharmacol. 79: 318–325, https://doi.org/10.1124/mol.110.069278.Search in Google Scholar PubMed PubMed Central

Smith, R.M., Banks, W., Hansen, E., Sadee, W., and Herman, G.E. (2014). Family-based clinical associations and functional characterization of the serotonin 2A receptor gene (HTR2A) in autism spectrum disorder. Autism Res. 7: 459–467, https://doi.org/10.1002/aur.1383.Search in Google Scholar PubMed PubMed Central

Speranza, L., Labus, J., Volpicelli, F., Guseva, D., Lacivita, E., Leopoldo, M., Bellenchi, G.C., di Porzio, U., Bijata, M., Perrone-Capano, C., et al.. (2017). Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. J. Neurochem. 141: 647–661, https://doi.org/10.1111/jnc.13962.Search in Google Scholar PubMed

Spivak, B., Golubchik, P., Mozes, T., Vered, Y., Nechmad, A., Weizman, A., and Strous, R.D. (2004). Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology 50: 157–160, https://doi.org/10.1159/000079108.Search in Google Scholar PubMed

Stiedl, O., Pappa, E., Konradsson-Geuken, A., and Ogren, S.O. (2015). The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front. Pharmacol. 6: 162, https://doi.org/10.3389/fphar.2015.00162.Search in Google Scholar PubMed PubMed Central

Stroth, N. and Svenningsson, P. (2015). S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior. Eur. Neuropsychopharmacol. 25: 2372–2380, https://doi.org/10.1016/j.euroneuro.2015.10.003.Search in Google Scholar PubMed

Syu, G.D., Sutandy, F.X.R., Chen, K., Cheng, Y., Chen, C.S., and Shih, J.C. (2023). Autoantibody profiling of monoamine oxidase A knockout mice, an autism spectrum disorder model. Brain Behav. Immun. 107: 193–200, https://doi.org/10.1016/j.bbi.2022.10.001.Search in Google Scholar PubMed

Takumi, T., Tamada, K., Hatanaka, F., Nakai, N., and Bolton, P.F. (2020). Behavioral neuroscience of autism. Neurosci. Biobehav. Rev. 110: 60–76, https://doi.org/10.1016/j.neubiorev.2019.04.012.Search in Google Scholar PubMed

Tanabe, Y., Fujita-Jimbo, E., Momoi, M.Y., and Momoi, T. (2015). CASPR2 forms a complex with GPR37 via MUPP1 but not with GPR37(R558Q), an autism spectrum disorder-related mutation. J. Neurochem. 134: 783–793, https://doi.org/10.1111/jnc.13168.Search in Google Scholar PubMed

Tanaka, M., Sato, A., Kasai, S., Hagino, Y., Kotajima-Murakami, H., Kashii, H., Takamatsu, Y., Nishito, Y., Inagaki, M., Mizuguchi, M., et al.. (2018). Brain hyperserotonemia causes autism-relevant social deficits in mice. Mol. Autism. 9: 60, https://doi.org/10.1186/s13229-018-0243-3.Search in Google Scholar PubMed PubMed Central

Tao, X., Newman-Tancredi, A., Varney, M.A., and Razak, K.A. (2023). Acute and repeated administration of NLX-101, a selective serotonin-1A receptor biased agonist, reduces audiogenic seizures in developing Fmr1 knockout mice. Neuroscience 509: 113–124, https://doi.org/10.1016/j.neuroscience.2022.11.014.Search in Google Scholar PubMed

Teixeira, J.P. and Ramalho, T.C. (2021). Regulation of protein synthesis: an approach to treat autism spectrum disorder (ASD). Curr. Med. Chem. 28: 7141–7156, https://doi.org/10.2174/0929867328666210419125634.Search in Google Scholar PubMed

Temudo, T., Rios, M., Prior, C., Carrilho, I., Santos, M., Maciel, P., Sequeiros, J., Fonseca, M., Monteiro, J., Cabral, P., et al.. (2009). Evaluation of CSF neurotransmitters and folate in 25 patients with Rett disorder and effects of treatment. Brain Dev. 31: 46–51, https://doi.org/10.1016/j.braindev.2008.05.003.Search in Google Scholar PubMed

Teng, B.L., Nonneman, R.J., Agster, K.L., Nikolova, V.D., Davis, T.T., Riddick, N.V., Baker, L.K., Pedersen, C.A., Jarstfer, M.B., and Moy, S.S. (2013). Prosocial effects of oxytocin in two mouse models of autism spectrum disorders. Neuropharmacology 72: 187–196, https://doi.org/10.1016/j.neuropharm.2013.04.038.Search in Google Scholar PubMed PubMed Central

Todd, R.D. and Ciaranello, R.D. (1985). Demonstration of inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic child. Proc. Natl. Acad. Sci. U. S. A. 82: 612–616, https://doi.org/10.1073/pnas.82.2.612.Search in Google Scholar PubMed PubMed Central

Tomova, A., Kemenyova, P., Filcikova, D., Szapuova, Z., Kovac, A., Babinska, K., and Ostatnikova, D. (2019). Plasma levels of glial cell marker S100B in children with autism. Physiol. Res. 68: S315–S323, https://doi.org/10.33549/physiolres.934350.Search in Google Scholar PubMed

Toth, M. (2003). 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 463: 177–184, https://doi.org/10.1016/s0014-2999(03)01280-9.Search in Google Scholar PubMed

Tsai, C.H., Chen, K.L., Li, H.J., Chen, K.H., Hsu, C.W., Lu, C.H., Hsieh, K.Y., and Huang, C.Y. (2020). The symptoms of autism including social communication deficits and repetitive and restricted behaviors are associated with different emotional and behavioral problems. Sci. Rep. 10: 20509, https://doi.org/10.1038/s41598-020-76292-y.Search in Google Scholar PubMed PubMed Central

Turner, J.H., Gelasco, A.K., and Raymond, J.R. (2004). Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. J. Biol. Chem. 279: 17027–17037, https://doi.org/10.1074/jbc.m313919200.Search in Google Scholar

Turner, J.H. and Raymond, J.R. (2005). Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J. Biol. Chem. 280: 30741–30750, https://doi.org/10.1074/jbc.m501696200.Search in Google Scholar

Veenstra-VanderWeele, J., Muller, C.L., Iwamoto, H., Sauer, J.E., Owens, W.A., Shah, C.R., Cohen, J., Mannangatti, P., Jessen, T., Thompson, B.J., et al.. (2012). Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc. Natl. Acad. Sci. U. S. A. 109: 5469–5474, https://doi.org/10.1073/pnas.1112345109.Search in Google Scholar PubMed PubMed Central

Vogelgesang, S., Niebert, S., Renner, U., Mobius, W., Hulsmann, S., Manzke, T., and Niebert, M. (2017). Analysis of the serotonergic system in a mouse model of Rett syndrome reveals unusual upregulation of serotonin receptor 5b. Front. Mol. Neurosci. 10: 61, https://doi.org/10.3389/fnmol.2017.00061.Search in Google Scholar PubMed PubMed Central

Walther, D.J. and Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 66: 1673–1680, https://doi.org/10.1016/s0006-2952(03)00556-2.Search in Google Scholar PubMed

Walther, D.J., Peter, J.U., Bashammakh, S., Hortnagl, H., Voits, M., Fink, H., and Bader, M. (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76, https://doi.org/10.1126/science.1078197.Search in Google Scholar PubMed

Wang, C.C., Lin, H.C., Chan, Y.H., Gean, P.W., Yang, Y.K., and Chen, P.S. (2013). 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int. J. Neuropsychopharmacol. 16: 2027–2039, https://doi.org/10.1017/s1461145713000473.Search in Google Scholar

Wang, D.D. and Bordey, A. (2008). The astrocyte odyssey. Prog. Neurobiol. 86: 342–367, https://doi.org/10.1016/j.pneurobio.2008.09.015.Search in Google Scholar PubMed PubMed Central

Wang, X., Guo, J., Song, Y., Wang, Q., Hu, S., Gou, L., and Gao, Y. (2018). Decreased number and expression of nNOS-positive interneurons in basolateral amygdala in two mouse models of autism. Front. Cell. Neurosci. 12: 251, https://doi.org/10.3389/fncel.2018.00251.Search in Google Scholar PubMed PubMed Central

Waterhouse, L. (1997). Genes tPA, Fyn, and FAK in autism? J. Autism Dev. Disord. 27: 220–223.Search in Google Scholar

Weir, R.K., Bauman, M.D., Jacobs, B., and Schumann, C.M. (2018). Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains. J. Comp. Neurol. 526: 262–274, https://doi.org/10.1002/cne.24332.Search in Google Scholar PubMed PubMed Central

Wesolowska, A., Tatarczynska, E., Nikiforuk, A., and Chojnacka-Wojcik, E. (2007). Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur. J. Pharmacol. 555: 43–47, https://doi.org/10.1016/j.ejphar.2006.10.001.Search in Google Scholar PubMed

White, S.W., Oswald, D., Ollendick, T., and Scahill, L. (2009). Anxiety in children and adolescents with autism spectrum disorders. Clin. Psychol. Rev. 29: 216–229, https://doi.org/10.1016/j.cpr.2009.01.003.Search in Google Scholar PubMed PubMed Central

Williams, K., Brignell, A., Randall, M., Silove, N., and Hazell, P. (2013). Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database Syst. Rev. 8: CD004677, https://doi.org/10.1002/14651858.cd004677.pub3.Search in Google Scholar

Witt, N.A., Lee, B., Ghent, K., Zhang, W.Q., Pehrson, A.L., Sanchez, C., and Gould, G.G. (2019). Vortioxetine reduces marble burying but only transiently enhances social interaction preference in adult male BTBR T(+)Itpr3(tf)/J mice. ACS Chem. Neurosci. 10: 4319–4327, https://doi.org/10.1021/acschemneuro.9b00386.Search in Google Scholar PubMed

Wong, N.M., Dipasquale, O., Turkheimer, F., Findon, J.L., Wichers, R.H., Dimitrov, M., Murphy, C.M., Stoencheva, V., Robertson, D.M., Murphy, D.G., et al.. (2022). Differences in social brain function in autism spectrum disorder are linked to the serotonin transporter: a randomised placebo-controlled single-dose crossover trial. J. Psychopharmacol. 36: 723–731, https://doi.org/10.1177/02698811221092509.Search in Google Scholar PubMed

Wong, N.M.L., Findon, J.L., Wichers, R.H., Giampietro, V., Stoencheva, V., Murphy, C.M., Blainey, S., Ecker, C., Murphy, D.G., McAlonan, G.M., et al.. (2020). Serotonin differentially modulates the temporal dynamics of the limbic response to facial emotions in male adults with and without autism spectrum disorder (ASD): a randomised placebo-controlled single-dose crossover trial. Neuropsychopharmacology 45: 2248–2256, https://doi.org/10.1038/s41386-020-0693-0.Search in Google Scholar PubMed PubMed Central

Wong, W.R., Brugman, K.I., Maher, S., Oh, J.Y., Howe, K., Kato, M., and Sternberg, P.W. (2019). Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum. Mol. Genet. 28: 2271–2281, https://doi.org/10.1093/hmg/ddz051.Search in Google Scholar PubMed PubMed Central

Worby, C.A. and Dixon, J.E. (2014). Pten. Annu. Rev. Biochem. 83: 641–669, https://doi.org/10.1146/annurev-biochem-082411-113907.Search in Google Scholar PubMed

Wu, X. and Hong, L. (2021). Calmodulin interactions with voltage-gated sodium channels. Int. J. Mol. Sci. 22: 9798, https://doi.org/10.3390/ijms22189798.Search in Google Scholar PubMed PubMed Central

Yang, S.Y., Yoo, H.J., Cho, I.H., Park, M., and Kim, S.A. (2012). Association with tryptophan hydroxylase 2 gene polymorphisms and autism spectrum disorders in Korean families. Neurosci. Res. 73: 333–336, https://doi.org/10.1016/j.neures.2012.05.012.Search in Google Scholar PubMed

Yenkoyan, K., Grigoryan, A., Fereshetyan, K., and Yepremyan, D. (2017). Advances in understanding the pathophysiology of autism spectrum disorders. Behav. Brain Res. 331: 92–101, https://doi.org/10.1016/j.bbr.2017.04.038.Search in Google Scholar PubMed

Yun, H.M., Kim, S., Kim, H.J., Kostenis, E., Kim, J.I., Seong, J.Y., Baik, J.H., and Rhim, H. (2007). The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J. Biol. Chem. 282: 5496–5505, https://doi.org/10.1074/jbc.m606215200.Search in Google Scholar PubMed

Zamarbide, M., Oaks, A.W., Pond, H.L., Adelman, J.S., and Manzini, M.C. (2018). Loss of the intellectual disability and autism gene Cc2d1a and its homolog Cc2d1b differentially affect spatial memory, anxiety, and hyperactivity. Front. Genet. 9: 65, https://doi.org/10.3389/fgene.2018.00065.Search in Google Scholar PubMed PubMed Central

Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., Ma, L., Hamm, M., Gage, F.H., and Hunter, T. (2016). Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5: e13374, https://doi.org/10.7554/elife.13374.Search in Google Scholar

Zheng, Y., Verhoeff, T.A., Perez Pardo, P., Garssen, J., and Kraneveld, A.D. (2020). The gut-brain axis in autism spectrum disorder: a focus on the metalloproteases ADAM10 and ADAM17. Int. J. Mol. Sci. 22: 118, https://doi.org/10.3390/ijms22010118.Search in Google Scholar PubMed PubMed Central

Ziak, J., Weissova, R., Jerabkova, K., Janikova, M., Maimon, R., Petrasek, T., Pukajova, B., Kleisnerova, M., Wang, M., Brill, M.S., et al.. (2020). CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling. EMBO Rep. 21: e48512, https://doi.org/10.15252/embr.201948512.Search in Google Scholar PubMed PubMed Central

Zoghbi, H.Y., Milstien, S., Butler, I.J., Smith, E.O., Kaufman, S., Glaze, D.G., and Percy, A.K. (1989). Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome. Ann. Neurol. 25: 56–60, https://doi.org/10.1002/ana.410250109.Search in Google Scholar PubMed

Received: 2023-05-12
Accepted: 2023-06-10
Published Online: 2023-07-10
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0055/html
Scroll to top button