Skip to main content
Log in

Preparation of Nonwoven Carbon Materials from Fabrics Based on Flax Cellulose and Viscose Fibers

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A method for obtaining nonwoven carbon materials by the staged heat treatment of cellulose felt is developed. Fabrics produced from fibrous flax cellulose and viscose fibers by needle punching are used as nonwoven precursors. To obtain carbon fabric precursors the optimum ratios of components are chosen from the data on the formation of nonwoven fabrics and the thermal analysis of various blend formulations. It is shown that the content of flax fibers in the system should be at least 50%. Viscose fibers play the role of a reinforcing material and so far cannot be fully excluded from the system. With an increase in the content of flax cellulose the value of carbon yield grows. The mechanical properties of the carbon felt are provided by the physical network of friction and dispersion contacts between individual fibers. Upon heat treatment of the composite nonwoven material, the morphological features of precursor fibers remain unchanged. The interplanar distances of carbon layers in the carbon material are calculated using X-ray diffraction analysis and transmission electron microscopy. The fraction of carbon upon heat treatment to 1700°С is at least 90%, and after graphitization to 2400°С the purity of the product is above 99%. The maximum values of carbon yield at this temperature may be as high as 25‒27%. The coefficients of thermal conductivity of the carbon felt are measured, and the values obtained are 30% lower than the corresponding parameters of carbon fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. Fitzer, D. D. Edie, and D. J. Johnson, Carbon Fibers Filaments and Composites, 1st ed., Ed. by J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker, and K. J. Huttinger, (Springer, New York, 1989), p. 582.

    Google Scholar 

  2. V. G. Torokhov, D. I. Chukov, V. V. Tcherdyntsev, G. Sherif, M. Y. Zadorozhnyy, A. A. Stepashkin, I. I. Larin, and E. V. Medvedeva, Polymers 14, 2956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. V. G. Kulichikhin, I. Yu. Skvortsov, M. I. Mironova, A. N. Ozerin, T. S. Kurkin, A. K. Berkovich, E. I. Frenkin, and A. Ya. Malkin, Adv. Polym. Technol. 37 (4), 1099 (2018).

    Article  CAS  Google Scholar 

  4. D. F. Grishin and I. D. Grishin, Fibre Chem. 50, 514 (2019).

    Article  CAS  Google Scholar 

  5. RF Patent No. 2 045 472 (1995).

  6. RF Patent No. 2 256 013 (2005).

  7. Ch. Daulbayev, B. Kaidar, F. Sultanov, B. Bakbolat, G. Smagulova, and Z. Mansurov, S. Afr. J. Chem. Eng. 38, 9 (2021).

    Google Scholar 

  8. R. Naslain, Advanced Inorganic Fibers, Ed. by F. T. Wallenberger, R. Naslain, J. B. Macchesney, and H. D. Ackler (Springer, Boston, 2000), p. 346.

    Google Scholar 

  9. H. Ahn, S. Y. Yeo, and B. S. Lee, Polymers 13, 2863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. M. Maksimov, R. V. Toms, M. S. Balashov, A. Yu. Gerval’d, N. I. Prokopov, A. V. Plutalova, M. S. Kuzin, I. Yu. Skvortsov, V. G. Kulichikhin, and E. V. Chernikova, Polym. Sci., Ser. B 64 (5), 670 (2022).

    Article  CAS  Google Scholar 

  11. I. S. Makarov, L. K. Golova, M. V. Mironova, M. I. Vinogradov, and V. G. Kulichikhin, IOP Conf. Ser. Mater. Sci. Eng. 347, 012032 (2018).

  12. A. Zaitsev, S. Moisan, and F. Poncin-Epaillard, Cellulose 28, 1973 (2021).

    Article  CAS  Google Scholar 

  13. V. A. Lysenko and M. V. Kriskovets, Fibre Chem. 50, 280 (2018).

    Article  CAS  Google Scholar 

  14. K. E. Perepelkin, Fibre Chem. 40 (1), 10 (2008).

    Article  CAS  Google Scholar 

  15. L. K. Golova, I. S. Makarov, E. V. Matukhina, S. A. Kuptsov, G. K. Shambilova, and V. G. Kulichikhin, Polym. Sci., Ser. A 50 (6), 665 (2008).

    Article  Google Scholar 

  16. S. Nag, J. Mitra, and P. G. Karmakar, Int. J. Agric., Environ. Biotechnol. 8 (4), 805 (2015).

    Article  Google Scholar 

  17. G. N. Kukin, L. N. Soloviev, and L. I. Koblyakov, Textile. Materials Science (Fibers and Threads): Textbook for Universities), 2nd ed. (Legprombytizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  18. L. K. Golova, Ross. Khim. Zh. 46 (1), 49 (2002).

    CAS  Google Scholar 

  19. P. Strunk, A. Lindgren, B. Eliasson, and R. Agnemo, Cellulose Chem. Technol. 46 (9–10), 559 (2012).

    CAS  Google Scholar 

  20. S. Hernberg, M. Tolonen, and M. Nurminen, Scand. J. Work, Environ. Health 2 (1), 27 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. A. Gomez-Campos, C. Vialle, A. Rouilly, C. Sablayrolles, and L. Hamelin, J. Cleaner Prod. 281, 125177 (2021).

  22. RF Patent No. 2 793 403 (2023).

  23. I. Wizon and J. A. Robertson, J. Polym. Sci., Polym. Symp. 19, 267 (1967).

    Article  Google Scholar 

  24. L. K. Golova, I. S. Makarov, G. N. Bondarenko, M. V. Mironova, A. K. Berkovich, G. A. Shandryuk, M. I. Vinogradov, M. V. Bermeshev, and V. G. Kulichikhin, Polym. Sci., Ser. B 62 (2), 152 (2020).

    Article  CAS  Google Scholar 

  25. RF Patent No. 2 258 773 (2004).

  26. B. C. Bai, J. S. Im, and Y. S. Lee, Carbon Lett. 23, 69 (2017).

    Google Scholar 

  27. D. N. Chernenko, Candidate’s Dissertation in Technical Sciences (Moscow, 2015).

  28. RF Patent No. 2 429 316 (2010).

  29. RF Patent No. 2 671 709 (2017).

  30. RF Patent No. 2 045 472 (1995).

  31. RF Patent No. 2 748 551 (2021).

  32. M. Fronczak, M. Kowalik, and M. Bystrzejewski, ChemistrySelect. 3 (28), 8259 (2018).

    Article  CAS  Google Scholar 

  33. H. Li, Y. Feng, L. Tang, and F. Yang, BioResources 16 (1), 1296 (2021).

    Article  CAS  Google Scholar 

  34. M. Vukcevic, A. Kalijadis, M. Radisic, B. Pejic, M. Kostic, Z. Lausevic, and M. Lausevic, Chem. Eng. J., 224 (2012).

  35. Ch. Li, M. Sun, X. Ji, S. Han, X. Wang, Y. Tian, and J. Feng, J. Sep. Sci. 42 (12), 2155 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. RF Patent No. 2 779 000 (2022).

  37. GOST (State Standard) 6840-78: Method for Determining the Content of alpha-Cellulose.

  38. GOST (State Standard) 6841-77: Cellulose. Method for Determination of Pitch and Fat.

  39. GOST (State Standard) 25438-82: Dissolving Pulp. Intrinsic Viscosity Determination.

  40. GOST (State Standard) 16932-93: Pulps. Determination of Dry Matter Content.

  41. W. Gindl and J. Keckes, Polymer 46 (23), 10221 (2005).

    Article  CAS  Google Scholar 

  42. R. Capart, L. Khezami, and A. K. Burnhamb, Thermochim. Acta 417 (1), 79 (2004).

    Article  CAS  Google Scholar 

  43. M. Mironova, I. Makarov, L. Golova, M. Vinogradov, G. Shandryuk, and I. Levin, Fibers 7, 84 (2019).

    Article  CAS  Google Scholar 

  44. Ch. Wu, Z. Wang, J. Huang, and P. T. Williams, Fuel 106, 697 (2013).

    Article  CAS  Google Scholar 

  45. M. Zimniewska, A. Zbrowski, W. Konczewicz, A. Majcher, J. Przybylski, K. Matecki, M. Wisniewski, A. Kicinska-Jakubowska, and J. Mankowski, Fibres Text. East. Eur. 25 (3) (123), 26 (2017).

  46. RF Patent No. 2 502 836 (2013).

  47. S. Y. Cho, Y. S. Yun, and H. J. Jin, Macromol. Res. 22 (7), 753 (2014).

    Article  CAS  Google Scholar 

  48. S. Ergun, Carbon 6 (2), 141 (1968).

    Article  CAS  Google Scholar 

  49. R. E. Franklin, Acta Crystallogr. 4, 253 (1951).

    Article  CAS  Google Scholar 

  50. M. S. Seehra and A. S. Pavlovic, Carbon 31 (4), 557 (1993).

    Article  CAS  Google Scholar 

  51. B. Kwiecinska, I. Suarez-Ruiz, C. Paluszkiewicz, and S. Rodrigues, Int. J. Coal Geol. 84 (3–4), 206 (2010).

    Article  CAS  Google Scholar 

  52. B. Kwiecinska, Pr. Mineral. 67, 1 (1980).

  53. GOST (State Standard) 29104.1: Industrial Fabrics. Methods for Determination of Linear Dimensions, Linear and Surface Density.

  54. GOST (State Standard) 17818.4-90: Graphite. Method for Determination of Ash Content.

  55. GOST (State Standard) R ISO 10119: Carbon Fibre. Methods for Determination of Density.

Download references

Funding

This work was supported by LLC Linum within the framework of grant agreement 4409GS1/72609 dated December 28, 2021 and within the framework of this work was carried out within the State Program of TIPS RAS and Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Makarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.S., Smyslov, A.G., Chernenko, D.N. et al. Preparation of Nonwoven Carbon Materials from Fabrics Based on Flax Cellulose and Viscose Fibers. Polym. Sci. Ser. A 65, 246–255 (2023). https://doi.org/10.1134/S0965545X23700979

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700979

Navigation