Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 11, 2023

A copper(I) coordination polymer with 3-cyanopyridine ligands

  • Cui-Er Deng , Yu-Shu Zhu , Xue-Chun Zhang , Yan-Lin Tao and Xi Liu EMAIL logo

Abstract

A coordination polymer Cu(3-CP)3(NO3) (1) was synthesized from copper(II) sulfate and 3-cyanopyridine (3-CP) with in-situ reduction by hydroxylamine sulfate via the solvent evaporation method at room temperature, and structurally characterized by single-crystal X-ray diffraction and elemental analysis. Complex 1 exhibits a structure formed by cationic [Cu(3-CP)3] n n+ chains and NO3 anions with abundant supramolecular interactions. Solid-state photoluminescence experiments show that complex 1 exhibits a relatively strong blue-green emission, and its possible emission mechanism was investigated in detail based on theoretical calculations.


Corresponding author: Xi Liu, Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge financial support of the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0170).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ford, P. C., Cariati, E., Bourassa, J. Chem. Rev. 1999, 99, 3625–3647; https://doi.org/10.1021/cr960109i.Search in Google Scholar PubMed

2. Hietsoi, O., Filatov, A. S., Dubceac, C., Petrukhina, M. A. Coord. Chem. Rev. 2015, 295, 125–138; https://doi.org/10.1016/j.ccr.2015.03.009.Search in Google Scholar

3. Tsuge, K., Chishina, Y., Hashiguchi, H., Sasaki, Y., Kato, M., Ishizaka, S., Kitamura, N. Coord. Chem. Rev. 2016, 306, 636–651; https://doi.org/10.1016/j.ccr.2015.03.022.Search in Google Scholar

4. Liu, X., Guo, G.-C., Wu, A.-Q., Cai, L.-Z., Huang, J.-S. Inorg. Chem. 2005, 44, 4282–4286; https://doi.org/10.1021/ic050315l.Search in Google Scholar PubMed

5. Liu, X., Guo, G.-C. Cryst. Growth Des. 2008, 8, 776–778; https://doi.org/10.1021/cg7009786.Search in Google Scholar

6. Liu, X., Huang, K.-L. Inorg. Chem. 2009, 48, 8653–8655; https://doi.org/10.1021/ic900611u.Search in Google Scholar PubMed

7. Liu, X., Huang, K.-L., Liang, G.-M., Wang, M.-S., Guo, G.-C. CrystEngComm 2009, 11, 1615–1620; https://doi.org/10.1039/b902121c.Search in Google Scholar

8. Liu, X., Zhao, Z., Wang, C.-H., Fu, S., Huang, K.-L. RSC Adv. 2017, 7, 40632–40639; https://doi.org/10.1039/c7ra07061f.Search in Google Scholar

9. Chen, W. T., Luo, Z. G., Xu, Y. P., Luo, Q. Y., Liu, J. H. J. Chem. Res. 2011, 35, 253–256; https://doi.org/10.3184/174751911x13014067908735.Search in Google Scholar

10. Heine, M., Fink, L., Schmidt, M. U. CrystEngComm 2019, 21, 4305–4318; https://doi.org/10.1039/c9ce00412b.Search in Google Scholar

11. Goher, M. A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M. A., Gspan, C. Polyhedron 2003, 22, 3137–3143; https://doi.org/10.1016/s0277-5387(03)00457-1.Search in Google Scholar

12. Heine, M., Fink, L., Schmidt, M. U. CrystEngComm 2018, 20, 7556–7566; https://doi.org/10.1039/c8ce01568f.Search in Google Scholar

13. Jochim, A., Jess, I., Näther, C. Z. Naturforsch. 2020, 75b, 163–172; https://doi.org/10.1515/znb-2019-0175.Search in Google Scholar

14. Zhao, X. L., Mak, T. C. W. Dalton Trans. 2014, 3212–3217; https://doi.org/10.1039/b406711h.Search in Google Scholar

15. Broderick, M. K., Yang, C., Pike, R. D., Nicholas, A., May, D., Patterson, H. H. Polyhedron 2016, 114, 333–343; https://doi.org/10.1016/j.poly.2016.01.005.Search in Google Scholar

16. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar PubMed PubMed Central

17. Guo, W., Shu, S., Zhang, T., Jian, Y., Liu, X. ACS Appl. Energy Mater. 2020, 3, 2983–2988; https://doi.org/10.1021/acsaem.0c00087.Search in Google Scholar

18. Guo, W., Shu, S., Zhang, T., Tao, Y., Xie, Y., Liu, X. CCS Chem. 2021, 3, 969–978; https://doi.org/10.31635/ccschem.021.202100785.Search in Google Scholar

19. Apex2. Data Reduction and Frame Integration Program for the CCD Area-Detector System; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Search in Google Scholar

20. Sheldrick, G. M. Shelxtl, Reference Manual; Siemens Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1994.Search in Google Scholar

21. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

22. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0004).


Received: 2023-01-21
Accepted: 2023-05-04
Published Online: 2023-07-11
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0004/html
Scroll to top button