1932

Abstract

All mammalian cell membranes contain cholesterol to maintain membrane integrity. The transport of this hydrophobic lipid is mediated by lipoproteins. Cholesterol is especially enriched in the brain, particularly in synaptic and myelin membranes. Aging involves changes in sterol metabolism in peripheral organs and also in the brain. Some of those alterations have the potential to promote or to counteract the development of neurodegenerative diseases during aging. Here, we summarize the current knowledge of general principles of sterol metabolism in humans and mice, the most widely used model organism in biomedical research. We discuss changes in sterol metabolism that occur in the aged brain and highlight recent developments in cell type–specific cholesterol metabolism in the fast-growing research field of aging and age-related diseases, focusing on Alzheimer's disease. We propose that cell type–specific cholesterol handling and the interplay between cell types critically influence age-related disease processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-091922-034237
2023-07-10
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-091922-034237.html?itemId=/content/journals/10.1146/annurev-neuro-091922-034237&mimeType=html&fmt=ahah

Literature Cited

  1. Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. 2009. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. PNAS 106:19316–21
    [Google Scholar]
  2. Allimuthu D, Hubler Z, Najm FJ, Tang H, Bederman I et al. 2019. Diverse chemical scaffolds enhance oligodendrocyte formation by inhibiting CYP51, TM7SF2, or EBP. Cell Chem. Biol. 26:593–99.e4
    [Google Scholar]
  3. Alsehli AM, Olivo G, Clemensson LE, Williams MJ, Schiöth HB. 2020. The cognitive effects of statins are modified by age. Sci. Rep. 10:6187
    [Google Scholar]
  4. Anderson A, Campo A, Fulton E, Corwin A, Jerome WG 3rd, O'Connor MS 2020. 7-Ketocholesterol in disease and aging. Redox. Biol. 29:101380
    [Google Scholar]
  5. Ando S, Tanaka Y, Toyoda Y, Kon K. 2003. Turnover of myelin lipids in aging brain. Neurochem. Res. 28:5–13
    [Google Scholar]
  6. Area-Gomez E, Schon EA 2017. Alzheimer disease. Organelle Contact Sites: From Molecular Mechanism to Disease M Tagaya, T Simmen 149–56. Singapore: Springer Singapore
    [Google Scholar]
  7. Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL. 2021. Cholesterol in membranes facilitates aggregation of amyloid β protein at physiologically relevant concentrations. ACS Chem. Neurosci. 12:506–16
    [Google Scholar]
  8. Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC et al. 2018. Cholesterol impairs autophagy-mediated clearance of amyloid β while promoting its secretion. Autophagy 14:1129–54
    [Google Scholar]
  9. Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM et al. 2012. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–71
    [Google Scholar]
  10. Beker N, Sikkes SAM, Hulsman M, Tesi N, van der Lee SJ et al. 2020. Longitudinal maintenance of cognitive health in centenarians in the 100-plus study. JAMA Netw. Open 3:e200094
    [Google Scholar]
  11. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S et al. 2022. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat. Genet. 54:412–36
    [Google Scholar]
  12. Berghoff SA, Spieth L, Saher G. 2022. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci. 45:272–83
    [Google Scholar]
  13. Berghoff SA, Spieth L, Sun T, Hosang L, Depp C et al. 2021a. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 37:109889
    [Google Scholar]
  14. Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L et al. 2021b. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24:47–60
    [Google Scholar]
  15. Bishop NA, Lu T, Yankner BA. 2010. Neural mechanisms of ageing and cognitive decline. Nature 464:529–35
    [Google Scholar]
  16. Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol. 24:806–15
    [Google Scholar]
  17. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. 2018. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22:269–85
    [Google Scholar]
  18. Bonvento G, Bolanos JP. 2021. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33:1546–64
    [Google Scholar]
  19. Brown MS, Radhakrishnan A, Goldstein JL. 2018. Retrospective on cholesterol homeostasis: the central role of Scap. Annu. Rev. Biochem. 87:783–807
    [Google Scholar]
  20. Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT et al. 2010. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. PNAS 107:3081–86
    [Google Scholar]
  21. Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. 2021. Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J. Cell Sci. 134:jcs255752
    [Google Scholar]
  22. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. 2018. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–82
    [Google Scholar]
  23. Camargo N, Goudriaan A, van Deijk AF, Otte WM, Brouwers JF et al. 2017. Oligodendroglial myelination requires astrocyte-derived lipids. PLOS Biol. 15:e1002605
    [Google Scholar]
  24. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M et al. 2018. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359:684–88
    [Google Scholar]
  25. Chen JF, Liu K, Hu B, Li RR, Xin W et al. 2021a. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer's disease. Neuron 109:2292–307.e5
    [Google Scholar]
  26. Chen Y, Strickland MR, Soranno A, Holtzman DM. 2021b. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109:205–21
    [Google Scholar]
  27. Chow H-M, Shi M, Cheng A, Gao Y, Chen G et al. 2019. Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat. Neurosci. 22:1806–19
    [Google Scholar]
  28. Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z 2021. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol. Neurobiol. 58:2183–201
    [Google Scholar]
  29. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. 2011. Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–76
    [Google Scholar]
  30. Daria A, Colombo A, Llovera G, Hampel H, Willem M et al. 2017. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. 36:583–603
    [Google Scholar]
  31. Das SR, Everett BM, Birtcher KK, Brown JM, Januzzi JL et al. 2020. Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes. J. Am. Coll. Cardiol. 76:1117–45
    [Google Scholar]
  32. de la Fuente AG, Queiroz RML, Ghosh T, McMurran CE, Cubillos JF et al. 2020. Changes in the oligodendrocyte progenitor cell proteome with ageing. Mol. Cell. Proteom. 19:81281–302
    [Google Scholar]
  33. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA et al. 2004. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41:193–202
    [Google Scholar]
  34. Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA et al. 2021. Ageing-associated myelin dysfunction drives amyloid deposition in mouse models of Alzheimer's disease. bioRxiv 2021.07.31.454562. https://doi.org/10.1101/2021.07.31.454562
  35. DeTure MA, Dickson DW. 2019. The neuropathological diagnosis of Alzheimer's disease. Mol. Neurodegener. 14:32
    [Google Scholar]
  36. Dietschy JM. 2009. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol. Chem. 390:287–93
    [Google Scholar]
  37. Dodge HH, Buracchio TJ, Fisher GG, Kiyohara Y, Meguro K et al. 2012. Trends in the prevalence of dementia in Japan. Int. J. Alzheimer's Dis. 2012:956354
    [Google Scholar]
  38. Dorsch M, Kowalczyk M, Planque M, Heilmann G, Urban S et al. 2021. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep. 37:110056
    [Google Scholar]
  39. Downer B, Estus S, Katsumata Y, Fardo DW. 2014. Longitudinal trajectories of cholesterol from midlife through late life according to apolipoprotein E allele status. Int. J. Environ. Res. Public Health 11:10663–93
    [Google Scholar]
  40. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61
    [Google Scholar]
  41. Edler MK, Mhatre-Winters I, Richardson JR 2021. Microglia in aging and Alzheimer's disease: a comparative species review. Cells 10:1138
    [Google Scholar]
  42. Estfanous S, Daily KP, Eltobgy M, Deems NP, Anne MNK et al. 2021. Elevated expression of MiR-17 in microglia of Alzheimer's disease patients abrogates autophagy-mediated amyloid-β degradation. Front. Immunol. 12:705581
    [Google Scholar]
  43. Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. 2019. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer's disease. Front. Aging Neurosci. 11:14
    [Google Scholar]
  44. Ferris HA, Perry RJ, Moreira GV, Shulman GI, Horton JD, Kahn CR. 2017. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. PNAS 114:1189–94
    [Google Scholar]
  45. Franklin RJM, Frisen J, Lyons DA. 2021. Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 116:3–9
    [Google Scholar]
  46. Fuentes D, Fernández N, García Y, García T, Morales AR, Menéndez R. 2018. Age-related changes in the behavior of apolipoprotein E knockout mice. Behav. Sci. 8:33
    [Google Scholar]
  47. Fünfschilling U, Jockusch WJ, Sivakumar N, Möbius W, Corthals K et al. 2012. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J. Neurosci. 32:7632–45
    [Google Scholar]
  48. GBD 2016 Neurol. Collab 2019. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18:459–80
    [Google Scholar]
  49. Gordon SM, Li H, Zhu X, Shah AS, Lu LJ, Davidson WS. 2015. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. J. Proteome Res. 14:2686–95
    [Google Scholar]
  50. Gouna G, Klose C, Bosch-Queralt M, Liu L, Gokce O et al. 2021. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J. Exp. Med. 218:e20210227
    [Google Scholar]
  51. Grant WB. 2014. Trends in diet and Alzheimer's disease during the nutrition transition in Japan and developing countries. J. Alzheimer's Dis. 38:611–20
    [Google Scholar]
  52. Grimm MO, Mett J, Grimm HS, Hartmann T. 2017. APP function and lipids: a bidirectional link. Front. Mol. Neurosci. 10:63
    [Google Scholar]
  53. Groenen AG, Halmos B, Tall AR, Westerterp M. 2021. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit. Rev. Biochem. Mol. Biol. 56:426–39
    [Google Scholar]
  54. Gu Q, Paulose-Ram R, Burt VL, Kit BK. 2014. Prescription cholesterol-lowering medication use in adults aged 40 and over: United States, 2003–2012. NCHS Data Brief 177:1–8
    [Google Scholar]
  55. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D et al. 2020. Disease-associated astrocytes in Alzheimer's disease and aging. Nat. Neurosci. 23:701–6
    [Google Scholar]
  56. Heinke P, Rost F, Rode J, Trus P, Simonova I et al. 2022. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst. 13:499–507.e12
    [Google Scholar]
  57. Henningfield CM, Arreola MA, Soni N, Spangenberg EE, Green KN. 2022. Microglia-specific ApoE knock-out does not alter Alzheimer's disease plaque pathogenesis or gene expression. Glia 70:287–302
    [Google Scholar]
  58. Herink M, Ito MK. 2000. Medication induced changes in lipid and lipoproteins. Endotext KR Feingold, B Anawalt, A Boyce, G Chrousos, WW de Herder, et al South Dartmouth, MA: Endotext
    [Google Scholar]
  59. Höglinger D, Burgoyne T, Sanchez-Heras E, Hartwig P, Colaco A et al. 2019. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10:4276
    [Google Scholar]
  60. Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M et al. 2018. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560:372–76
    [Google Scholar]
  61. Hubler Z, Friedrich RM, Sax JL, Allimuthu D, Gao F et al. 2021. Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation. Cell Chem. Biol. 28:866–75.e5
    [Google Scholar]
  62. Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY et al. 2004. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 44:227–38
    [Google Scholar]
  63. Ikonen E, Zhou X. 2021. Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes. Dev. Cell 56:1430–36
    [Google Scholar]
  64. Jahn T, Clark C, Kerksiek A, Lewczuk P, Lutjohann D, Popp J. 2021. Cholesterol metabolites and plant sterols in cerebrospinal fluid are associated with Alzheimer's cerebral pathology and clinical disease progression. J. Steroid Biochem. Mol. Biol. 205:105785
    [Google Scholar]
  65. Jang J, Park S, Jin Hur H, Cho HJ, Hwang I et al. 2016. 25-Hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat. Commun. 7:13129
    [Google Scholar]
  66. Janičko M, Veselíny E, Leško D, Jarčuška P. 2013. Serum cholesterol is a significant and independent mortality predictor in liver cirrhosis patients. Ann. Hepatol. 12:413–19
    [Google Scholar]
  67. Johnson ECB, Carter EK, Dammer EB, Duong DM, Gerasimov ES et al. 2022. Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25:213–25
    [Google Scholar]
  68. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M et al. 2020. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26:769–80
    [Google Scholar]
  69. Koch S, Donarski N, Goetze K, Kreckel M, Stuerenburg H-J et al. 2001. Characterization of four lipoprotein classes in human cerebrospinal fluid. J. Lipid Res. 42:1143–51
    [Google Scholar]
  70. Konings SC, Torres-Garcia L, Martinsson I, Gouras GK. 2021. Astrocytic and neuronal apolipoprotein E isoforms differentially affect neuronal excitability. Front. Neurosci. 15:734001
    [Google Scholar]
  71. Lak B, Li S, Belevich I, Sree S, Butkovic R et al. 2021. Specific subdomain localization of ER resident proteins and membrane contact sites resolved by electron microscopy. Eur. J. Cell Biol. 100:151180
    [Google Scholar]
  72. Lane CA, Barnes J, Nicholas JM, Baker JW, Sudre CH et al. 2021. Investigating the relationship between BMI across adulthood and late life brain pathologies. Alzheimer's Res. Ther. 13:91
    [Google Scholar]
  73. Lane-Donovan C, Wong WM, Durakoglugil MS, Wasser CR, Jiang S et al. 2016. Genetic restoration of plasma ApoE improves cognition and partially restores synaptic defects in ApoE-deficient mice. J. Neurosci. 36:10141–50
    [Google Scholar]
  74. Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. 2021. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Mol. Biol. Cell 32:247–59
    [Google Scholar]
  75. Lee CYD, Daggett A, Gu X, Jiang L-L, Langfelder P et al. 2018. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer's disease models. Neuron 97:1032–48.e5
    [Google Scholar]
  76. Lee E, Jung Y-J, Park YR, Lim S, Choi Y-J et al. 2022. A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis. Nat. Aging 2:726–41
    [Google Scholar]
  77. Li Z-Y, Chen L-H, Zhao X-Y, Chen H, Sun Y-Y et al. 2021. Clemastine attenuates AD-like pathology in an AD model mouse via enhancing mTOR-mediated autophagy. Exp. Neurol. 342:113742
    [Google Scholar]
  78. Liu GY, Sabatini DM. 2020. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21:183–203
    [Google Scholar]
  79. Liu Y, Thalamuthu A, Mather KA, Crawford J, Ulanova M et al. 2021. Plasma lipidome is dysregulated in Alzheimer's disease and is associated with disease risk genes. Transl. Psychiatry 11:344
    [Google Scholar]
  80. Lu A, Hsieh F, Sharma BR, Vaughn SR, Enrich C, Pfeffer SR. 2021. CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. J. Cell Biol. 221:e202105060
    [Google Scholar]
  81. Lund EG, Guileyardo JM, Russell DW. 1999. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. PNAS 96:7238–43
    [Google Scholar]
  82. Luo J, Jiang LY, Yang H, Song BL 2019. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem. Sci. 44:273–92
    [Google Scholar]
  83. Lv YB, Yin ZX, Chei CL, Qian HZ, Kraus VB et al. 2015. Low-density lipoprotein cholesterol was inversely associated with 3-year all-cause mortality among Chinese oldest old: data from the Chinese Longitudinal Healthy Longevity Survey. Atherosclerosis 239:137–42
    [Google Scholar]
  84. Mahan TE, Wang C, Bao X, Choudhury A, Ulrich JD, Holtzman DM. 2022. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol. Neurodegener. 17:13
    [Google Scholar]
  85. Maihofer AX, Shadyab AH, Wild RA, LaCroix AZ. 2020. Associations between serum levels of cholesterol and survival to age 90 in postmenopausal women. J. Am. Geriatr. Soc. 68:288–96
    [Google Scholar]
  86. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B et al. 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23:194–208
    [Google Scholar]
  87. Martin MG, Perga S, Trovò L, Rasola A, Holm P et al. 2008. Cholesterol loss enhances TrkB signaling in hippocampal neurons aging in vitro. Mol. Biol. Cell 19:2101–12
    [Google Scholar]
  88. Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E et al. 2017. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology 123:465–76
    [Google Scholar]
  89. Miron VE, Rajasekharan S, Jarjour AA, Zamvil SS, Kennedy TE, Antel JP. 2007. Simvastatin regulates oligodendroglial process dynamics and survival. Glia 55:130–43
    [Google Scholar]
  90. Morrison JH, Baxter MG. 2012. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 13:240–50
    [Google Scholar]
  91. Muse ED, Yu S, Edillor CR, Tao J, Spann NJ et al. 2018. Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. PNAS 115:E4680–89
    [Google Scholar]
  92. Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L et al. 2020. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105:837–54.e9
    [Google Scholar]
  93. Ohara T, Hata J, Yoshida D, Mukai N, Nagata M et al. 2017. Trends in dementia prevalence, incidence, and survival rate in a Japanese community. Neurology 88:1925–32
    [Google Scholar]
  94. Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L et al. 2014. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging 35:1–14
    [Google Scholar]
  95. Peters A, Sethares C, Luebke JI. 2008a. Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 152:970–81
    [Google Scholar]
  96. Peters A, Verderosa A, Sethares C. 2008b. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56:1151–61
    [Google Scholar]
  97. Pingale TD, Gupta GL. 2021. Novel therapeutic approaches for Parkinson's disease by targeting brain cholesterol homeostasis. J. Pharm. Pharmacol. 73:862–73
    [Google Scholar]
  98. Provenzano F, Perez MJ, Deleidi M. 2021. Redefining microglial identity in health and disease at single-cell resolution. Trends Mol. Med. 27:47–59
    [Google Scholar]
  99. Reu P, Khosravi A, Bernard S, Mold JE, Salehpour M et al. 2017. The lifespan and turnover of microglia in the human brain. Cell Rep. 20:779–84
    [Google Scholar]
  100. Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. 2021. HDL in the 21st century: a multifunctional roadmap for future HDL research. Circulation 143:2293–309
    [Google Scholar]
  101. Roser M, Ortiz-Ospina E, Ritchie H 2013. Life expectancy. Our World in Data https://ourworldindata.org/life-expectancy
    [Google Scholar]
  102. Roser M, Ritchie H, Spooner F. 2021. Burden of disease. Our World in Data https://ourworldindata.org/burden-of-disease
    [Google Scholar]
  103. Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L et al. 2021. White matter aging drives microglial diversity. Neuron 109:1100–17.e10
    [Google Scholar]
  104. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K et al. 2016. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19:995–98
    [Google Scholar]
  105. Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R et al. 2005. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8:468–75
    [Google Scholar]
  106. Saher G, Stumpf SK. 2015. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim. Biophys. Acta 1851:1083–94
    [Google Scholar]
  107. Schupf N, Costa R, Luchsinger J, Tang M-X, Lee JH, Mayeux R. 2005. Relationship between plasma lipids and all-cause mortality in nondemented elderly. J. Am. Geriatrics Soc. 53:219–26
    [Google Scholar]
  108. Shapira KE, Shapira G, Schmukler E, Pasmanik-Chor M, Shomron N et al. 2021. Autophagy is induced and modulated by cholesterol depletion through transcription of autophagy-related genes and attenuation of flux. Cell Death Discov. 7:320
    [Google Scholar]
  109. Silbernagel G, Fauler G, Hoffmann MM, Lütjohann D, Winkelmann BR et al. 2010. The associations of cholesterol metabolism and plasma plant sterols with all-cause and cardiovascular mortality. J. Lipid Res. 51:2384–93
    [Google Scholar]
  110. Song R, Pan K-Y, Xu H, Qi X, Buchman AS et al. 2021. Association of cardiovascular risk burden with risk of dementia and brain pathologies: a population-based cohort study. Alzheimer's Dement. 17:1914–22
    [Google Scholar]
  111. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB et al. 2012. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–52
    [Google Scholar]
  112. Stommel A, Berlet HH, Debuch H. 1989. Buoyant density and lipid composition of purified myelin of aging human brain. Mech. Ageing Dev. 48:1–14
    [Google Scholar]
  113. Sun Z, Wang ZT, Sun FR, Shen XN, Xu W et al. 2020. Late-life obesity is a protective factor for prodromal Alzheimer's disease: a longitudinal study. Aging 12:2005–17
    [Google Scholar]
  114. Thelen KM, Falkai P, Bayer TA, Lutjohann D. 2006. Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci. Lett. 403:15–19
    [Google Scholar]
  115. Thompson PD, Panza G, Zaleski A, Taylor B. 2016. Statin-associated side effects. J. Am. Coll. Cardiol. 67:2395–410
    [Google Scholar]
  116. Tilvis RS, Valvanne JN, Strandberg TE, Miettinen TA. 2011. Prognostic significance of serum cholesterol, lathosterol, and sitosterol in old age: a 17-year population study. Ann. Med. 43:292–301
    [Google Scholar]
  117. Trinh MN, Brown MS, Goldstein JL, Han J, Vale G et al. 2020. Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. PNAS 117:18521–29
    [Google Scholar]
  118. Tuck BJ, Miller LVC, Katsinelos T, Smith AE, Wilson EL et al. 2022. Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Rep. 39:110776
    [Google Scholar]
  119. van Deijk AF, Camargo N, Timmerman J, Heistek T, Brouwers JF et al. 2017. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 65:670–82
    [Google Scholar]
  120. van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK et al. 2019. Cholesterol metabolism is a druggable axis that independently regulates Tau and amyloid-β in iPSC-derived Alzheimer's disease neurons. Cell Stem Cell 24:363–75.e9
    [Google Scholar]
  121. Vance JE. 2014. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841:595–609
    [Google Scholar]
  122. Vanmierlo T, Lütjohann D, Mulder M. 2011. Brain cholesterol in normal and pathological aging. OCL 18:214–17
    [Google Scholar]
  123. Varma VR, Lüleci HB, Oommen AM, Varma S, Blackshear CT et al. 2021. Abnormal brain cholesterol homeostasis in Alzheimer's disease—a targeted metabolomic and transcriptomic study. NPJ Aging Mech. Dis. 7:11
    [Google Scholar]
  124. Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I et al. 2019. Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimer's Dement. 15:888–98
    [Google Scholar]
  125. Wang C, Xiong M, Gratuze M, Bao X, Shi Y et al. 2021. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109:1657–74.e7
    [Google Scholar]
  126. Wang H, Eckel RH. 2014. What are lipoproteins doing in the brain?. Trends Endocrinol. Metab. 25:8–14
    [Google Scholar]
  127. Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. 2021. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. PNAS 118:e2102191118
    [Google Scholar]
  128. Wang Y, Yutuc E, Griffiths WJ. 2021. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br. J. Pharmacol. 178:3176–93
    [Google Scholar]
  129. Ward NC, Watts GF, Eckel RH. 2019. Statin toxicity.. Circ. Res. 124:328–50
    [Google Scholar]
  130. Williams DM, Finan C, Schmidt AF, Burgess S, Hingorani AD. 2020. Lipid lowering and Alzheimer disease risk: a Mendelian randomization study. Ann. Neurol. 87:30–39
    [Google Scholar]
  131. Wilson S, Pietsch M, Cordero-Grande L, Price AN, Hutter J et al. 2021. Development of human white matter pathways in utero over the second and third trimester. PNAS 118:e2023598118
    [Google Scholar]
  132. Xie C, Lund EG, Turley SD, Russell DW, Dietschy JM. 2003. Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J. Lipid Res. 44:1780–89
    [Google Scholar]
  133. Xu M-X, Liu C, He Y-M, Yang X-J, Zhao X 2017. Long-term statin therapy could be efficacious in reducing the lipoprotein (a) levels in patients with coronary artery disease modified by some traditional risk factors. J. Thorac. Dis. 9:1322–32
    [Google Scholar]
  134. Yang AC, Vest RT, Kern F, Lee DP, Agam M et al. 2022. A human brain vascular atlas reveals diverse mediators of Alzheimer's risk. Nature 603:885–92
    [Google Scholar]
  135. Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M et al. 2014. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–74
    [Google Scholar]
  136. Zarrouk A, Vejux A, Mackrill J, O'Callaghan Y, Hammami M et al. 2014. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res. Rev. 18:148–62
    [Google Scholar]
  137. Zeng Y, Feng Q, Gu D, Vaupel JW. 2017. Demographics, phenotypic health characteristics and genetic analysis of centenarians in China. Mech. Ageing Dev. 165:86–97
    [Google Scholar]
  138. Zhang Q, Sidorenko J, Couvy-Duchesne B, Marioni RE, Wright MJ et al. 2020a. Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture. Nat. Commun. 11:4799
    [Google Scholar]
  139. Zhang X, Wang R, Hu D, Sun X, Fujioka H et al. 2020b. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci. Adv. 6:eabb8680
    [Google Scholar]
  140. Zhou C, Lei H, Chen Y, Liu Q, Li LC et al. 2013. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation. PLOS ONE 8:e75650
    [Google Scholar]
  141. Zimetti F, Freitas WM, Campos AM, Daher M, Adorni MP et al. 2018. Cholesterol efflux capacity does not associate with coronary calcium, plaque vulnerability, and telomere length in healthy octogenarians. J. Lipid Res. 59:714–21
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-091922-034237
Loading
/content/journals/10.1146/annurev-neuro-091922-034237
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error