Semin Respir Crit Care Med 2023; 44(05): 526-537
DOI: 10.1055/s-0043-1770058
Review Article

Respiratory System Dynamics

David A. Kaminsky
1   Division of Pulmonary and Critical Care, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
,
Donald W. Cockcroft
2   Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan College of Medicine, Saskatoon Saskatchewan, Canada
,
Beth E. Davis
3   Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan College of Medicine, Saskatoon Saskatchewan, Canada
› Author Affiliations

Abstract

While static mechanical forces govern resting lung volumes, dynamic forces determine tidal breathing, airflow, and changes in airflow and lung volume during normal and abnormal breathing. This section will examine the mechanisms, measurement methodology, and interpretation of the dynamic changes in airflow and lung volume that occur in health and disease. We will first examine how the total work of breathing can be described by the parameters of the equation of motion, which determine the pressure required to move air into and out of the lung. This will include a detailed description of airflow characteristics and airway resistance. Next, we will review the changes in pressure and flow that determine maximal forced inspiration and expiration, which result in the maximal flow–volume loop and the clinically important forced expired volume in 1 second. We will also assess the mechanisms and interpretation of bronchodilator responsiveness, dynamic hyperinflation, and airways hyperresponsiveness.



Publication History

Article published online:
10 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med 2017; 12: 3
  • 2 Cabello B, Mancebo J. Work of breathing. Intensive Care Med 2006; 32 (09) 1311-1314
  • 3 Wagers S, Lundblad L, Moriya HT, Bates JH, Irvin CG. Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. J Appl Physiol 2002; 92 (05) 1802-1807
  • 4 Bossé Y, Riesenfeld EP, Paré PD, Irvin CG. It's not all smooth muscle: non-smooth-muscle elements in control of resistance to airflow. Annu Rev Physiol 2010; 72: 437-462
  • 5 Al-Subu AM, Rehder KJ. Heliox as adjunctive therapy for pediatric critical asthma: time to question its role?. Respir Care 2022; 67 (05) 624-626
  • 6 Mead J. The lung's “quiet zone”. N Engl J Med 1970; 282 (23) 1318-1319
  • 7 Paré PD, Mitzner W. Airway-parenchymal interdependence. Compr Physiol 2012; 2 (03) 1921-1935
  • 8 Kaminsky DA. What does airway resistance tell us about lung function?. Respir Care 2012; 57 (01) 85-96 , discussion 96–99
  • 9 Kaminsky DA, Simpson SJ, Berger KI. et al. Clinical significance and applications of oscillometry. Eur Respir Rev 2022; 31 (163) 31
  • 10 King GG, Bates J, Berger KI. et al. Technical standards for respiratory oscillometry. Eur Respir J 2020; 55 (02) 55
  • 11 Stanojevic S, Kaminsky DA, Miller MR. et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J 2022; 60 (01) 60
  • 12 Hole DJ, Watt GC, Davey-Smith G, Hart CL, Gillis CR, Hawthorne VM. Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study. BMJ 1996; 313 (7059): 711-715 , discussion 715–716
  • 13 Krishnan JK, Martinez FJ. Lung function trajectories and chronic obstructive pulmonary disease: current understanding and knowledge gaps. Curr Opin Pulm Med 2018; 24 (02) 124-129
  • 14 Mannino DM, McBurnie MA, Tan W. et al; BOLD Collaborative Research Group. Restricted spirometry in the Burden of Lung Disease Study. Int J Tuberc Lung Dis 2012; 16 (10) 1405-1411
  • 15 Mathew J, Nickel NP. Cardiovascular morbidity in individuals with impaired FEV1. Curr Cardiol Rep 2022; 24 (03) 163-182
  • 16 Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J 1993; 6 (Suppl. 16) 5-40
  • 17 Wanger JS, Ikle DN, Cherniack RM. The effect of inspiratory maneuvers on expiratory flow rates in health and asthma: influence of lung elastic recoil. Am J Respir Crit Care Med 1996; 153 (4 Pt 1): 1302-1308
  • 18 Hyatt RE. Expiratory flow limitation. J Appl Physiol 1983; 55 (1 pt 1): 1-7
  • 19 Pedersen OF, Butler JP. Expiratory flow limitation. Compr Physiol 2011; 1 (04) 1861-1882
  • 20 Dawson SV, Elliott EA. Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol 1977; 43 (03) 498-515
  • 21 Bates J. Physics of Expiratory Flow Limitation. In: Hamid Q, Shannon J, Martin J. eds. Physiologic Basis of Respiratory Disease. Hamilton, ON, Canada: BC Decker, Inc.; 2005
  • 22 Kass JE, Terregino CA. The effect of heliox in acute severe asthma: a randomized controlled trial. Chest 1999; 116 (02) 296-300
  • 23 Pellegrino R, Brusasco V. On the causes of lung hyperinflation during bronchoconstriction. Eur Respir J 1997; 10 (02) 468-475
  • 24 ATS statement–Snowbird workshop on standardization of spirometry. Am Rev Respir Dis 1979; 119 (05) 831-838
  • 25 Statement of the American Thoracic Society. Standardization of spirometry–1987 update. Am Rev Respir Dis 1987; 136 (05) 1285-1298
  • 26 American Thoracic Society. Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 1995; 152 (03) 1107-1136
  • 27 Miller MR, Hankinson J, Brusasco V. et al; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 2005; 26 (02) 319-338
  • 28 Graham BL, Steenbruggen I, Miller MR. et al. Standardization of spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med 2019; 200 (08) e70-e88
  • 29 Douce DH. Pulmonary Function Testing. Accessed June 6, 2023 at: https://thoracickey.com/pulmonary-function-testing-2/
  • 30 Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001; 163 (05) 1256-1276
  • 31 Stanojevic S, Wade A, Stocks J. et al. Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med 2008; 177 (03) 253-260
  • 32 Quanjer PH, Stanojevic S, Cole TJ. et al; ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40 (06) 1324-1343
  • 33 Pellegrino R, Viegi G, Brusasco V. et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26 (05) 948-968
  • 34 Quanjer PH, Pretto JJ, Brazzale DJ, Boros PW. Grading the severity of airways obstruction: new wine in new bottles. Eur Respir J 2014; 43 (02) 505-512
  • 35 Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol 2003; 24 (01) 55-72
  • 36 Mason RJ. Surfactant synthesis, secretion, and function in alveoli and small airways. Review of the physiologic basis for pharmacologic intervention. Respiration 1987; 51 (Suppl. 01) 3-9
  • 37 Nicholas TE, Power JH, Barr HA. The pulmonary consequences of a deep breath. Respir Physiol 1982; 49 (03) 315-324
  • 38 O'Donnell DE, Milne KM, James MD, de Torres JP, Neder JA. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther 2020; 37 (01) 41-60
  • 39 Cockcroft DW, Berscheid BA. Volume adjustment of maximal midexpiratory flow. Importance of changes in total lung capacity. Chest 1980; 78 (04) 595-600
  • 40 Olsen CR, Hale FC. A method for interpreting acute response to bronchodilators from the spirogram. Am Rev Respir Dis 1968; 98 (02) 301-302
  • 41 Kaminsky DA. What is a significant bronchodilator response?. Ann Am Thorac Soc 2019; 16 (12) 1495-1497
  • 42 Palecek F. Hyperinflation: control of functional residual lung capacity. Physiol Res 2001; 50 (03) 221-230
  • 43 O'Donnell DE, Laveneziana P. The clinical importance of dynamic lung hyperinflation in COPD. COPD 2006; 3 (04) 219-232
  • 44 Dempsey JA, Neder JA, Phillips DB, O'Donnell DE. The physiology and pathophysiology of exercise hyperpnea. Handb Clin Neurol 2022; 188: 201-232
  • 45 O'Donnell D. Impacting patient-centered outcomes in COPD: breathlessness and exercise tolerance. Eur Respir Rev 2006; 15: 37-41
  • 46 Rossi A, Aisanov Z, Avdeev S. et al. Mechanisms, assessment and therapeutic implications of lung hyperinflation in COPD. Respir Med 2015; 109 (07) 785-802
  • 47 Marin JM, Carrizo SJ, Gascon M, Sanchez A, Gallego B, Celli BR. Inspiratory capacity, dynamic hyperinflation, breathlessness, and exercise performance during the 6-minute-walk test in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163 (06) 1395-1399
  • 48 van den Berge M, Vonk JM, Gosman M. et al. Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur Respir J 2012; 40 (05) 1098-1105
  • 49 van Haren EH, Lammers JW, Festen J, Heijerman HG, Groot CA, van Herwaarden CL. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adult patients with cystic fibrosis. Respir Med 1995; 89 (03) 209-214
  • 50 Sasaki F, Ishizaki T, Mifune J, Fujimura M, Nishioka S, Miyabo S. Bronchial hyperresponsiveness in patients with chronic congestive heart failure. Chest 1990; 97 (03) 534-538
  • 51 Woolcock AJ, Salome CM, Yan K. The shape of the dose-response curve to histamine in asthmatic and normal subjects. Am Rev Respir Dis 1984; 130 (01) 71-75
  • 52 Coates AL, Wanger J, Cockcroft DW. et al; Bronchoprovocation Testing Task Force: Kai-Håkon Carlsen. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J 2017; 49 (05) 49
  • 53 Salome CM, Brown NJ, Reddel HK, Xuan W, Marks GB. Indices of bronchial reactivity and sensitivity. Thorax 2011; 66 (03) 265-266 , author reply 266
  • 54 Kaminsky DA, Chapman DG. Asthma and lung mechanics. Compr Physiol 2020; 10 (03) 975-1007
  • 55 Bai TR. Abnormalities in airway smooth muscle in fatal asthma. A comparison between trachea and bronchus. Am Rev Respir Dis 1991; 143 (02) 441-443
  • 56 Björck T, Gustafsson LE, Dahlén SE. Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am Rev Respir Dis 1992; 145 (05) 1087-1091
  • 57 Solway J, Fredberg JJ. Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all. Am J Respir Cell Mol Biol 1997; 17 (02) 144-146
  • 58 Moreno RH, Hogg JC, Paré PD. Mechanics of airway narrowing. Am Rev Respir Dis 1986; 133 (06) 1171-1180
  • 59 Lambert RK, Wiggs BR, Kuwano K, Hogg JC, Paré PD. Functional significance of increased airway smooth muscle in asthma and COPD. J Appl Physiol 1993; 74 (06) 2771-2781
  • 60 Macklem PT. Mechanical factors determining maximum bronchoconstriction. Eur Respir J Suppl 1989; 6: 516s-519s
  • 61 Chapman DG, Brown NJ, Salome CM. The dynamic face of respiratory research: understanding the effect of airway disease on a lung in constant motion. Pulm Pharmacol Ther 2011; 24 (05) 505-512
  • 62 Bates JH. Systems physiology of the airways in health and obstructive pulmonary disease. Wiley Interdiscip Rev Syst Biol Med 2016; 8: 423-437
  • 63 Skloot G, Permutt S, Togias A. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J Clin Invest 1995; 96 (05) 2393-2403
  • 64 Ding DJ, Martin JG, Macklem PT. Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol 1987; 62 (03) 1324-1330
  • 65 Meinero M, Coletta G, Dutto L. et al. Mechanical response to methacholine and deep inspiration in supine men. J Appl Physiol 2007; 102 (01) 269-275
  • 66 Chapman DG, Berend N, Horlyck KR, King GG, Salome CM. Does increased baseline ventilation heterogeneity following chest wall strapping predispose to airway hyperresponsiveness?. J Appl Physiol 2012; 113 (01) 25-30
  • 67 Pratusevich VR, Seow CY, Ford LE. Plasticity in canine airway smooth muscle. J Gen Physiol 1995; 105 (01) 73-94
  • 68 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28 (05) 596-608
  • 69 Hughes PJC, Smith L, Chan HF. et al. Assessment of the influence of lung inflation state on the quantitative parameters derived from hyperpolarized gas lung ventilation MRI in healthy volunteers. J Appl Physiol 2019; 126 (01) 183-192
  • 70 Venegas JG, Winkler T, Musch G. et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 2005; 434 (7034): 777-782
  • 71 Pellegrino R, Pompilio PP, Bruni GI. et al. Airway hyperresponsiveness with chest strapping: A matter of heterogeneity or reduced lung volume?. Respir Physiol Neurobiol 2009; 166 (01) 47-53
  • 72 Mitchell HW, Fisher JT, Sparrow MP. The integrity of the epithelium is a major determinant of the responsiveness of the dog bronchial segment to mucosal provocation. Pulm Pharmacol 1993; 6 (04) 263-268
  • 73 Kippelen P, Anderson SD, Hallstrand TS. Mechanisms and biomarkers of exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 2018; 38 (02) 165-182
  • 74 Pascoe CD, Seow CY, Hackett TL, Paré PD, Donovan GM. Heterogeneity of airway wall dimensions in humans: a critical determinant of lung function in asthmatics and nonasthmatics. Am J Physiol Lung Cell Mol Physiol 2017; 312 (03) L425-L431
  • 75 Gillis HL, Lutchen KR. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J Appl Physiol 1999; 86 (06) 2001-2012
  • 76 Hallstrand TS, Leuppi JD, Joos G. et al; American Thoracic Society (ATS)/European Respiratory Society (ERS) Bronchoprovocation Testing Task Force. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J 2018; 52 (05) 52
  • 77 Pauwels R, Joos G, Van der Straeten M. Bronchial hyperresponsiveness is not bronchial hyperresponsiveness is not bronchial asthma. Clin Allergy 1988; 18 (04) 317-321
  • 78 Crapo RO, Casaburi R, Coates AL. et al. Guidelines for methacholine and exercise challenge testing-1999. American Thoracic Society. Am J Respir Crit Care Med 2000; 161: 309-329
  • 79 Cockcroft DW, Davis BE. The bronchoprotective effect of inhaling methacholine by using total lung capacity inspirations has a marked influence on the interpretation of the test result. J Allergy Clin Immunol 2006; 117: 1244-1248