Skip to main content
Log in

Genome-wide analysis and expression profiling of YUCCA gene family associated with plant vigor in Japanese apricot (prunus mume Sieb. Et zucc)

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Indole-3-acetic acid (IAA) is an important plant hormone required for various plant growth and developmental activities. YUCCA proteins are the enzymes for IAA synthesis that catalyze the rate-limiting step. However, the YUCCA gene family in Japanese apricot has not been thoroughly characterized. Here, we investigated the effect of rootstocks on scion growth of Japanease apricot and genes involved in auxin biosynthesis (YUCCA). Growth characteristics revealed that the height of ‘Longyan’ [Prunus mume Sieb. et Zucc] plants with P. mume rootstock were significantly shorter than ‘Longyan’ plants with P. persica rootstock. This study isolated 13 PmYUCCA genes from the Japanese apricot genome. Bioinformatics and expression studies were undertaken to investigate the functions and characteristics of YUCCA genes. The physicochemical properties, gene structure, conserved domains, conserved motif, and phylogenetic relationships of YUCCA genes were determined using bioinformatics analysis. Likewise, we analyzed the expression of PmYUCCA genes in Japanese apricot’s leaf and stem-bark (scion). The expression levels of PmYUCCA3 and PmYUCCA5 genes were noticeably lower in the leaves of ‘Longyan’/P. mume graft combination than that of the ‘Longyan’/P. persica graft combinations, suggesting their distinct roles in regulating growth vigor. This research explores the genome-wide identification, characterization, and possible relationship between growth vigor and expression profile analysis of the YUCCA gene family in Japanese apricot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adachi M, Suzuki Y, Mizuta T, Osawa T, Adachi T, Osaka K, Suzuki K, Shiojima K, Arai Y, Masuda K (2007) The “Prunus mume Sieb. Et Zucc” (Ume) is a rich natural source of novel anti-cancer substance. Int J Food Prop 10:375–384

    Article  CAS  Google Scholar 

  • Amiri ME, Fallahi E, Safi-Songhorabad M (2014) Influence of Rootstock on Mineral Uptake and Scion Growth of “Golden Delicious” and “Royal Gala” Apples. J Plant Nutr 37:16–29. https://doi.org/10.1080/01904167.2013.792838

    Article  CAS  Google Scholar 

  • Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P (2019) Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Hortic Res 6:58. https://doi.org/10.1038/s41438-019-0140-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Balzan S, Johal GS, Carraro N (2014) The role of auxin transporters in monocots development. Front Plant Sci 5:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN (2018) Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47:306–318e5

    Article  CAS  PubMed  Google Scholar 

  • Böttcher C, Burbidge CA, Boss PK, Davies C (2013) Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol 13:1–14

    Article  Google Scholar 

  • Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int J Mol Sci. 2019 Dec 16;20(24):6343. https://doi.org/10.3390/ijms20246343. PMID: 31888214; PMCID: PMC6941117.

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z-Y, Lin Y-S, Liu X-M, Cheng J-R, Yang C-Y (2017) Chemical composition and antioxidant activities of five samples of Prunus mume Umezu from different factories in south and east China. J. Food Qual. 2017

  • Costes E, Salles JC, Garcia G (2001) Growth and branching pattern along the main axis of two apple cultivars grafted on two different rootstocks. Acta Hort. https://doi.org/10.17660/ActaHortic.2001.557.16

    Article  Google Scholar 

  • Coulibaly D, Huang X, Ting S, Iqbal S, Ni Z, Ouma KO, …, Gao Z (2022) Comparative analysis of complete chloroplast genome and phenotypic characteristics of japanese Apricot Accessions. Horticulturae 8(9):794

    Article  Google Scholar 

  • Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, Van de Geest H, Bianco L, Micheletti D, Velasco R (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated Profile HMM searches. PLoS Comput Biol 7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The pfam protein families database. Nucleic Acids Res 38:D211–D222. https://doi.org/10.1093/nar/gkp985

    Article  CAS  PubMed  Google Scholar 

  • Foster TM, McAtee PA, Waite CN, Boldingh HL, McGhie TK (2017) Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Hortic Res 4. https://doi.org/10.1038/hortres.2017.9

  • Gallavotti A (2013) The role of auxin in shaping shoot architecture. J Exp Bot 64:2593–2608

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008) sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc. Natl. Acad. Sci. 105, 15196–15201

  • Gjamovski V, Kiprijanovski M (2011) Influence of nine dwarfing apple rootstocks on vigor and productivity of apple cultivar “Granny Smith. " Sci Hortic (Amsterdam) 129:742–746. https://doi.org/10.1016/j.scienta.2011.05.032

    Article  Google Scholar 

  • Guo S, Iqbal S, Ma R, Song J, Yu M, Gao Z (2018) High-density genetic map construction and quantitative trait loci analysis of the stony hard phenotype in peach based on restriction-site associated DNA sequencing. BMC Genomics 19:1–13

    Article  Google Scholar 

  • Habets MEJ, Offringa R (2014) PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–377

    Article  CAS  PubMed  Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Bennett AB (2012) Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J Biotechnol 161:349–353

    Article  CAS  PubMed  Google Scholar 

  • Hayat F, Iqbal S, Coulibaly D, Razzaq MK, Nawaz MA, Jiang W, Shi T, Gao Z (2021) An insight into dwarfing mechanism: contribution of scion-rootstock interactions toward fruit crop improvement. Fruit Res 1:1–11

    Article  Google Scholar 

  • Hayat F, Li J, Liu W, Li C, Song W, Iqbal S, Khan U, Umer Javed H, Ahsan Altaf M, Tu P, et al (2022). Influence of citrus rootstocks on scion growth, hormone levels, and metabolites profile of ‘shatangju’ mandarin (Citrus reticulata Blanco). Horticulturae 8:68. https://doi.org/10.3390/horticulturae8070608

  • Hayat F, Qiu C, Xu X, Wang Y, Wu T, Zhang X, Nawaz MA, Han Z (2019) Rootstocks influence morphological and biochemical changes in young ‘red fuji’apple plants. Intl J Agric Biol 21:1

    Google Scholar 

  • Hayat F, S Asghar, Z Yanmin, T Xue, MA Nawaz, X Xu, Y Wang, T Wu, X Zhang, C Qiu, Z Han (2020). Rootstock induced vigour is associated with physiological, biochemical and molecular changes in ‘‘red fuji’’ apple. Intl J Agric Biol 24:1823–1834

  • Iqbal S, Ni X, Bilal MS, Shi T, Khalil-ur-Rehman M, Zhenpeng P, Jie G, Usman M, Gao Z (2020) Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene 742:144584

    Article  CAS  PubMed  Google Scholar 

  • Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999) Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regul 28:199–205. https://doi.org/10.1023/A:1006292309765

    Article  CAS  Google Scholar 

  • Khan, M. N., Hayat, F., Asim, M., Iqbal, S., Ashraf, T., & Asghar, S. (2020). Influence of citrus rootstocks on growth performance and leaf mineral nutrition of ‘Salustiana’ sweet orange [Citrus sinensis (L). obsek]. Journal of Pure and Applied Agriculture 5(1):46–53.

  • Kim JI, Murphy AS, Baek D, Lee S-W, Yun D-J, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Jung J-H, Han D-Y, Seo PJ, Park WJ, Park C-M (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung H-S (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Yin N, Niu Z, Hui W, Song J, Huang C, Wang H, Kong L, Feng D (2014) Isolation and characterization of three TaYUC10genes from wheat. Gene 546:187–194

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chen J, Zhang Q (2007) Carbonated stone fruit from underground at Peiligang historical site in Xinzheng, Henan Province. J Beijing For Univ 29:59–61

    Google Scholar 

  • Liu H, Ying Y-Y, Zhang L, Gao Q-H, Li J, Zhang Z, Fang J-G, Duan K (2012) Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria× ananassa Duch). Plant Cell Rep 31:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu B, Yu L, Feng D, Wang H, Wang J (2009) Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 9:1–19

    Article  CAS  Google Scholar 

  • Li W, Zhao X, Zhang X (2015) Genome-wide analysis and expression patterns of the YUCCA genes in maize. J Genet genomics = Yi chuan xue bao 42:707–710

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Lockard RG, Schneider GW (1981) Stock and scion growth relationships and the dwarfing mechanism in apple. In: Janick J (ed) Horticultural reviews. John Wiley and Sons. AVI Pub. Co, Hoboken

    Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Michalczuk L (2002) Indole-3-acetic acid level in wood, bark and cambial sap of apple rootstocks differing in growth vigor. Acta Physiol Plant 24:131–136. https://doi.org/10.1007/s11738-002-0002-z

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiol 140:411–432. https://doi.org/10.1104/pp.105.073783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T (2020) Interspecific introgression and natural selection in the evolution of japanese apricot (Prunus mume). Plant J 104:1551–1567

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Zeng W, Niu L, Lu Z, Liu H, Cui G, Zhu Y, Chu J, Li W, Fang W (2015) PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. J Exp Bot 66:7031–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudencio AS, Devin SR, Mahdavi SME, Martínez-García PJ, Salazar JA, Martínez-Gómez P (2022) Spontaneous, Artificial, and genome editing-mediated mutations in Prunus. Int J Mol Sci 23:13273. https://doi.org/10.3390/ijms232113273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian L-H, Zhou G-C, Sun X-Q, Lei Z, Zhang Y-M, Xue J-Y, Hang Y-Y (2017) Distinct patterns of Gene Gain and loss: diverse evolutionary modes of NBS-Encoding genes in three Solanaceae Crop Species. G3 Genes|Genomes|Genetics. 7:1577–1585. https://doi.org/10.1534/g3.117.040485

  • Richards D, Thompson WK, Pharis RP (1986)Metabolism Xylem-Applied1090–1095

  • Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512

    Article  CAS  PubMed  Google Scholar 

  • Ruedell CM, de Almeida MR, Fett-Neto AG (2015) Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants. Plant Physiol Biochem 97:11–19

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. 107, 8569–8574

  • Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, Yu X, Li X, Li F, Qu S (2019) Transcriptomic analysis of interstock-induced dwarfism in Sweet Persimmon (Diospyros kaki Thunb). Hortic Res 6:1–17

    Article  Google Scholar 

  • Shi T, Luo W, Li H, Huang X, Ni Z, Gao H, Iqbal S, Gao Z (2020) Association between blooming time and climatic adaptation in Prunus mume. Ecol Evol 10:292–306

    Article  PubMed  Google Scholar 

  • Song C, Zhang D, Zhang J, Zheng L, Zhao C, Ma J, An N, Han M (2016) Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiol Plant 38:1–15. https://doi.org/10.1007/s11738-016-2065-2

    Article  CAS  Google Scholar 

  • Song C, Zhang D, Zheng L, Shen Y, Zuo X, Mao J, Meng Y, Wu H, Zhang Y, Liu X (2020) Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Sci Rep 10:1–12

    Google Scholar 

  • Van Hooijdonk BM, Woolley DJ, Warrington IJ, Tustin DS (2010) Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. J Hortic Sci Biotechnol 85:59–65. https://doi.org/10.1080/14620316.2010.11512631

    Article  Google Scholar 

  • Venema JH, Elzenga JTM, Bouwmeester HJ (2010) Selection and breeding of robust rootstocks as a tool to improve nutrient-use efficiency and abiotic stress tolerance in tomato, in: I International Conference on Organic Greenhouse Horticulture 915. pp. 109–115

  • Wang W, Gu L, Ye S, Zhang H, Cai C, Xiang M, Gao Y, Wang Q, Lin C, Zhu Q (2017a) Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics 18:1–16

    Article  Google Scholar 

  • Wang Y, Liu H, Wang S, Li H (2017b) Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L). Plant Growth Regul 81:265–275

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang W, Zuo Y, Zhu L, Hastwell AH, Chen L, Tian Y, Su C, Ferguson BJ, Li X (2019) GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot 70:3165–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1108436108

  • Woodward C, Bemis SM, Hill EJ, Sawa S, Koshiba T, Torii KU (2005) Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol 139:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo Y-M, Park H-J, Su’udi M, Yang J-I, Park J-J, Back K, Park Y-M, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  CAS  PubMed  Google Scholar 

  • Wu C-S, Wang Y-N, Hsu C-Y, Lin C-P, Chaw S-M (2011) Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny.Genome Biol. Evol. 2011, 3, 1284?1295

  • Yan S, Che G, Ding L, Chen Z, Liu X, Wang H, Zhao W, Ning K, Zhao J, Tesfamichael K (2016) Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci Rep 6:1–12

    CAS  Google Scholar 

  • Ye X, Kang B, Osburn LD, Li Y, Max CZ-M (2009) Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell, Tissue Organ Cult. 97, 271–283

  • Yıldırım F, Yıldırım AN, San B, Ercişli S (2016) The Relationship between Growth Vigor of Rootstock and phenolic contents in Apple (Malus × domestica). Erwerbs-Obstbau 58:25–29. https://doi.org/10.1007/s10341-015-0253-7

    Article  Google Scholar 

  • Yu Z, Zhang D, Hu S, Liu X, Zeng B, Gao W, He Y, Qin H, Ma X (2022) Genome-wide analysis of the Almond AP2/ERF superfamily and its functional prediction during dormancy in response to freezing stress. Biology (Basel) 11:1520. https://doi.org/10.3390/biology11101520

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, An HS, Wang Y, Zhang XZ, Han ZH (2015) Low expression of PIN gene family members is involved in triggering the dwarfing effect in M9 interstem but not in M9 rootstock apple trees. Acta Physiol Plant 37:1–18. https://doi.org/10.1007/s11738-015-1851-6

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin Biosynthesis and its role in Plant Development. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-042809-112308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. https://doi.org/10.1126/science.291.5502.306. (80-.)

    Article  PubMed  Google Scholar 

  • Zheng L, Zhang L, Duan K, Zhu Z-P, Ye Z-W, Gao Q-H (2016) YUCCA type auxin biosynthesis genes encoding flavin monooxygenases in melon: genome-wide identification and developmental expression analysis. South Afr J Bot 102:142–152

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the project of Jiangsu Key Research on Seed Industry (JBGS〔2021〕019)), the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS [2021]473), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), for funding this research in materials collection, data analysis, and experiment.

Author information

Authors and Affiliations

Authors

Contributions

ZG conceived and designed the experiments, SI, BY, CM and HX collected the research materials. FH and SI conducted experiment and wrote the manuscript. MMA, SA and MH helped in analyzing data. MAN, UK, WFM and MAS revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhihong Gao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Seon-In Yeom.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, F., Bai, Y., Iqbal, S. et al. Genome-wide analysis and expression profiling of YUCCA gene family associated with plant vigor in Japanese apricot (prunus mume Sieb. Et zucc). Hortic. Environ. Biotechnol. 64, 819–833 (2023). https://doi.org/10.1007/s13580-023-00524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-023-00524-z

Keywords

Navigation