Skip to main content
Log in

Sliding mode control of vehicle hydraulic travelling system based on exponential convergent disturbance observer

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This paper takes the motor drive travelling system of vehicles as research object. Addressing the disturbance derived from complex pavement and nonlinearity of system during walking and combined the characteristics of the mathematical model of hydraulic travelling system, a disturbance observer based on exponential convergent is designed on the conditions of the vehicle drives at low speed. It can estimate disturbances online and feedforward compensate to the control system. Then a sliding mode control strategy is used to motor speed control system. The simulation model of valve controlled motor system is carried out through MATLAB/Simulink platform. Compared of the result between the proportion integral differential (PID), sliding mode control (SMC) and sliding mode control (SMC) + disturbance observer (DOB), the oscillation and overshoot of step response on SMC are decreased obviously. When the slow time-varying torque disturbance is added on to evaluate the effects of disturbance observer induced on the SMC, the disturbance value can estimate precisely and deduce influence of motor speed. It improves the SMC + DOB control accuracy and made the vehicle travel on the complex pavement more smoothly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(J_{{\text{m}}}\) :

Inertia of motor and external loads (Kg•m2)

\(\omega_{{\text{m}}}\) :

Motor speed (angular velocity) (r/min)

\(B_{{\text{m}}}\) :

Damping coefficient (N•m•s/rad)

\(T_{{\text{L}}}\) :

External load torque (N•m)

\(d\) :

Disturbance which is contains of torque disturbance, un-modeled friction force and nonlinearity(N•m)

\(D_{{\text{m}}}\) :

Displacement of motor (mL/r)

\(\Delta p\) :

Pressure difference between inlet and outlet of motor (MPa)

\(F_{{\text{G}}}\) :

The gravity of the vehicle acting on the drive wheel (N)

\(\theta\) :

Road gradient (°)

\(F_{{\text{r}}}\) :

Frictional resistance (N)

\(\mu\) :

Rolling frictional resistance coefficient

\(Q_{{\text{m}}}\) :

Flow of motor (L/min)

\(C_{{\text{t}}}\) :

Leakage coefficient [m5/(N•s)]

k :

The number of control cycle

s :

Sliding mode manifold

\(\eta\) :

Switching gain of sliding mode control

V:

Lyapunov function

\(V_{{\text{t}}}\) :

The volume of one chamber (m3)

\(\beta_{{\text{e}}}\) :

Bulk modulus (GPa)

\(k_{{\text{q}}}\) :

The gain coefficient between the Qm and km

\(k_{{\text{m}}}\) :

Control signal of proportional multi-way valve

\(\tilde{d}\) :

The estimation of d

\(K\) :

The gain of observer

z :

The assistant vector

\(\tilde{d}\) :

The difference between \(\tilde{d}\) and d

\(K_{{\text{p}}}\) :

Proportional parameter

\(K_{{\text{i}}}\) :

Integration parameter

\(K_{{\text{d}}}\) :

Differential parameter

e :

Motor speed error (r/min)

u :

The control input

u 0 :

Control input value of proportional valve on the last cycle

k 0 :

Sliding mode control parameter

\(\Delta\) :

Boundary value

l :

Gain parameter

References

  • Ahmed, A.S.: Sampled data observer based inter-sample output predictor for electro-hydraulic actuators. ISA Trans. 58, 421–433 (2015)

    Article  Google Scholar 

  • Chen, S.Y., Lin, F.J.: Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system. IEEE Trans. Control Syst. Technol. 19(3), 636–643 (2011)

    Article  Google Scholar 

  • Chen, W.H., Balance, D.J., Gawthrop, P.J., Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  • Dasgupta, K., Mandal, S.K., Pan, S.: Dynamic analysis of a low speed high torque hydrostatic drive using steady-state characteristics. Mech. Mach. Theory 52, 1–17 (2012)

    Article  Google Scholar 

  • Fan, Y.H., Li, P.L., Wang, W., Y J.: Research of pump control motor constant speed system based on compound PID and feedforward control technology. Mach. Tool Hydraul. 46(1), 68–73 (2018)

    Google Scholar 

  • Gualtiero, B., Laura, G., Giovanni, J.: Hydraulic actuation system with active control for the lateral suspensions of high speed trains. Heavy Veh. Syst. 20(3), 236–252 (2013)

    Article  Google Scholar 

  • Guo, K., Wei, J.H., Tian, Q.Y.: Disturbance observer based position tracking of electro-hydraulic actuator. J. Cent. South Univ. Technol. 22, 2158–2165 (2015)

    Article  Google Scholar 

  • Guo, Q., Yin, J.M., Yu, T., Jiang, D.: Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system. ISA Trans. 68, 367–380 (2017)

    Article  Google Scholar 

  • Guo, X.P., Wang, C.W., Liu, H., Zhang, Z.Y.: Extended state observer based sliding mode control for pump-controlled electro-hydraulic servo system. J. Beijing Univ. Aeronaut. Astronaut. 46, 1159–1168 (2020)

    Google Scholar 

  • Ho, T.H., Ahn, K.K.: Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control. IEEE/ASME Trans. Mechatron. 17(5), 976–986 (2012)

    Article  Google Scholar 

  • Kim, W., Shin, D., Won, D., Chung, C.C.: Disturbance-observer-based position tracking controller in the presence of biased sinusoidal disturbance for actuators. IEEE Trans. Control Syst. Technol. 21(6), 2290–2298 (2013)

    Article  Google Scholar 

  • Lee, W., Chung, W.K.: Disturbance-observer-based compliance control of electro-hydraulic actuators with backdrivability. IEEE Robot. Autom. Letters 4(2), 1722–1729 (2019)

    Article  Google Scholar 

  • Lee, J.D., Khoo, S., Wang, Z.B.: DSP-Based sliding-mode control for electromagnetic-levitation precise-position system. J. IEEE Trans. Ind. Inform. 9(2), 817–827 (2013)

    Article  Google Scholar 

  • Li, Y.H., He, L.Y.: counterbalancing speed control for hydrostatic drive heavy vehicle under long down-slope. J. IEEE/ASME Trans. Mechatron. 20(4), 1533–1542 (2015)

    Article  Google Scholar 

  • Mahamadreza, H., Amir, K.: Disturbance observer-based trajectory following control of robot manipulators. Int. J. Control Autom. Syst. 17(1), 203–211 (2019)

    Article  Google Scholar 

  • Pan, R.C., Li, Z.G.: Adaptive sliding mode control of projectile coordination arm based on disturbance observer. J. Ordnance Equip. Eng. 42, 53–57 (2021)

    Google Scholar 

  • Sun, Y.H., Shi, Y.L., Wang, Q.Y., Yao, Z.W.: Study on speed characteristics of hydraulic top drive under fluctuating load. J. Petrol. Sci. Eng. 167, 277–286 (2018)

    Article  Google Scholar 

  • Tong, N.K., Rui, G.C., Ma, B., Shen, G.: Process simulation based on mode control exponential convergent disturbance observer for opening and closing process of launcher’s cover. J. Chin. Hydraul. Pneum. 10, 22–28 (2018)

    Google Scholar 

  • Wallace, M.B., Max, S.D., Edwin, K.hi, Q.: Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system. Intell. Robust Syst.: Theory Appl. 58, 3–16 (2010)

    Article  MATH  Google Scholar 

  • Wang, L.T., Sun, W., Gong, G.F., Yang, H.Y.: Electro-hydraulic control of high-speed segment erection processes. Autom. Constr. 73, 67–77 (2017)

    Article  Google Scholar 

  • Wang, J., Shao, C.F., Chen, Y.Q.: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018)

    Article  Google Scholar 

  • Won, D., Kim, W., Shin, D., Chung, C.C.: High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems. IEEE Trans. Control Syst. Technol. 23(2), 787–795 (2015)

    Article  Google Scholar 

  • Yao, J.Y., Jiao, Z.X., Ma, D.W., Yan, L.: High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron. 19(2), 633–641 (2014)

    Article  Google Scholar 

  • Zeng, X.H., Li, G.H., Yin, G.D.: Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle. Mech. Syst. Signal Process. 101, 97–120 (2018)

    Article  Google Scholar 

  • Zhao, Q.T., Yao, J.Y., Yao, Z.K.: Finite time disturbance observer based robust integral tracking control. J. Zhejiang Univ. (Eng. Sci.) 53(10), 1874–1882 (2019)

    Google Scholar 

  • Zhu, M., Chen, H.Y., Xiong, G.M.: A model predictive speed tracking control approach for autonomous ground vehicles. Mech. Syst. Signal Process. 87, 138–152 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuyu He.

Ethics declarations

Conflicts of interest

The authors declare non conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Wu, X., Zhou, L. et al. Sliding mode control of vehicle hydraulic travelling system based on exponential convergent disturbance observer. Int J Intell Robot Appl 7, 708–719 (2023). https://doi.org/10.1007/s41315-023-00290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-023-00290-2

Keywords

Navigation