Skip to main content
Log in

AlGaN-Based Deep-Ultraviolet Laser Diodes with Quaternary AlInGaN Last Quantum Barrier

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose the quaternary AlInGaN last quantum barrier (LQB) structure to improve the performance of deep-ultraviolet (DUV) laser diodes (LDs). Here, we investigate three LQB structures – Al0.63In0.03Ga0.34N LQB, Al0.65In0.03Ga0.32N LQ band, and Al0.68In0.03Ga0.29N LQB. We find that the Al0.68In0.03Ga0.29N LQB structure significantly reduces the electron leakage in the p-region, improves the carrier injection efficiency in the active region, and increases the stimulated radiation recombination rate of the DUV LDs. The simulation results indicate that the threshold current and threshold voltage decrease from 50.93 mA and 4.70 V for the Al0.63In0.03Ga0.34N LQB structure to 42.47 mA and 4.63 V for the Al0.68In0.03Ga0.29N LQB structure, respectively. At an injection current of 100 mA, the slope efficiency increases to 1.12 W/A. Compared with the conventional ternary AlGaN LQB structure, the quaternary AlInGaN LQB structure significantly improves the performance of the DUV LDs, which is crucial for the development of the DUV LDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-S. Park, J. K. Kim, J. Cho, and T.-Y. Seong, ECS J. Solid State Sci. Technol., 6, Q42-Q52 (2017); DOI: https://doi.org/10.1149/2.0111704jss

    Article  Google Scholar 

  2. T. Kyono, H. Hirayama, K. Akita, et al., J. Appl. Phys., 99, 114509 (2006); DOI: https://doi.org/10.1063/1.2200749

  3. H. Hirayama, J. Appl. Phys., 97, 091101 (2005); DOI: https://doi.org/10.1063/1.1899760

  4. M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, Nat. Photonics, 13, 233 (2019); DOI: https://doi.org/10.1038/s41566-019-0359-9

    Article  ADS  Google Scholar 

  5. Z. Xing, F. Wang, Y. Wang, et al., Opt. Express, 30, 36446 (2022); DOI: https://doi.org/10.1364/OE.469338

    Article  ADS  Google Scholar 

  6. S. U. Khan, S. M. Nawaz, M. I. Niass, et al., J. Russ. Laser Res., 43, 370 (2022); DOI: https://doi.org/10.1007/s10946-022-10061-2

    Article  Google Scholar 

  7. S. M. Nawaz, M. I. Niass, Y. Wang, et al., Superlattices Microstruct., 145, 106643 (2020); DOI: https://doi.org/10.1016/j.spmi.2020.106643

  8. Y. Xu, P. Zhang, A. Zhang, et al., Eur. Phys. J. D, 76, 183 (2022); DOI: https://doi.org/10.1140/epjd/s10053-022-00506-3

    Article  ADS  Google Scholar 

  9. L. Jia, M. Wang, A. Zhang, et al., “Structure optimization of deep ultraviolet laser diodes with superlattice electron blocking layer,” in: 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China (2021), p. 1; DOI: https://doi.org/10.1109/ISNE48910.2021.9493641

  10. H. Hirayama, Y. Enomoto, A. Kinoshita, et al., Appl. Phys. Lett., 80, 1589 (2002); DOI: https://doi.org/10.1063/1.1456951

    Article  ADS  Google Scholar 

  11. S.-M. Zeng, G.-H. Fan, S.-W. Zheng, et al., Appl. Phys. A, 119, 971 (2015); DOI: https://doi.org/10.1007/s00339-015-9053-z

    Article  ADS  Google Scholar 

  12. T. Jamil, M. Usman, S. Malik, and H. Jamal, Appl. Phys. A, 127, 397 (2021); DOI: https://doi.org/10.1007/s00339-021-04559-w

    Article  ADS  Google Scholar 

  13. S. Tanaka, Y. Ogino, K. Yamada, et al., Appl. Phys. Lett., 118, 163504 (2021); DOI: https://doi.org/10.1063/5.0046224

  14. M. N. Sharif, M. Ajmal Khan, Q. Wali, et al., Opt. Laser Technol., 152, 108156 (2022); DOI: https://doi.org/10.1016/j.optlastec.2022.108156

  15. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN-Based Light Emitters and Lasers, Springer Berlin, Heidelberg (2013).

    Google Scholar 

  16. M. N. Sharif, M. I. Niass, J. J. Liou, et al., Semicond. Sci. Technol., 36, 055017 (2021); DOI: https://doi.org/10.1088/1361-6641/abeff6

  17. M. N. Sharif, M. I. Niass, J. J. Liou, et al., Superlattices Microstruct., 158, 107022 (2021); DOI: https://doi.org/10.1016/j.spmi.2021.107022

  18. M. I. Niass, M. N. Sharif, Y. Wang, et al., J. Semicond., 40, 122802 (2019).

    Article  ADS  Google Scholar 

  19. M. N. Sharif, M. I. Niass, J. J. Liou, et al., Semicond. Sci. Technol., 36, 055017 (2021); DOI: https://doi.org/10.1088/1361-6641/abeff6

  20. A. Zhang, P. Zhang, Y. Wang, et al., “Optimization of deep ultraviolet laser diode using thickness gradient multiple-quantum-well,” in: 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China (2021), p. 1; DOI: https://doi.org/10.1109/ISNE48910.2021.9493590

  21. Y.-F. Wang, M. I. Niass, F. Wang, and Y.-H. Liu, Chin. Phys. B, 29, 017301 (2020); DOI: https://doi.org/10.1088/1674-1056/ab592c

  22. Z.-Q. Xing, Y.-J. Zhou, Y.-H. Liu, and F. Wang, Chin. Phys. Lett., 37, 027302 (2020); DOI: https://doi.org/10.1088/0256-307X/37/2/027302

  23. Y.-F. Wang, M. I. Niass, F. Wang, and Y.-H. Liu, Chin. Phys. Lett., 36, 057301 (2019); DOI: https://doi.org/10.1088/0256-307X/36/5/057301

  24. Y. Xing, D.-G. Zhao, D.-S. Jiang, et al., Chin. Phys. B, 27, 028101 (2018); DOI: https://doi.org/10.1088/1674-1056/27/2/028101

  25. P.-M. Tu, C.-Y. Chang, S.-C. Huang, et al., Appl. Phys. Lett., 98, 211107 (2011); DOI: https://doi.org/10.1063/1.3591967

  26. N. U. Islam, M. Usman, S. Khan, et al., Optik, 248, 168212 (2021); DOI: https://doi.org/10.1016/j.ijleo.2021.168212

  27. X. Chen, Y. A. Yin, D. Wang, and G. Fan, J. Electron. Mat., 48, 2572 (2019); DOI: https://doi.org/10.1007/s11664-019-07001-3

    Article  ADS  Google Scholar 

  28. T. Takano, S. Fujikawa, Y. Kondo, and H. Hirayama, Phys. Status Solidi C, 5, 2102 (2008); DOI: https://doi.org/10.1002/pssc.200778455

    Article  ADS  Google Scholar 

  29. S. Fujikawa, H. Hirayama, T. Takano, and K. Tsubaki, Phys. Status Solidi C, 6(S2), S784 (2009); DOI: https://doi.org/10.1002/pssc.200880955

    Article  ADS  Google Scholar 

  30. M. Usman and S. Malik, ECS J. Solid State Sci. Technol., 11, 076004 (2022); DOI: https://doi.org/10.1149/2162-8777/ac7f58

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Yuhuai Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Zhang, A., Sang, X. et al. AlGaN-Based Deep-Ultraviolet Laser Diodes with Quaternary AlInGaN Last Quantum Barrier. J Russ Laser Res 44, 339–347 (2023). https://doi.org/10.1007/s10946-023-10139-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10139-5

Keywords

Navigation