Skip to main content
Log in

A systematic review on cooperative dual-arm manipulators: modeling, planning, control, and vision strategies

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The framework of this paper is to present a systematic review of the state-of-the-art development of cooperative dual-arm manipulators in the industrial and household fields. A PRISMA report is exploited to select the inclusion and exclusion criteria of the relevant research articles for the review process. Based on the design, mobility, and application aspects, a sustainable classification of these manipulators is addressed. Thereafter, modeling, planning, control, and visualization techniques are investigated in developing dual-arm manipulators. The classification of control strategy for cooperative dual-arm manipulators is systematically presented in tabulated form based on the control method, targeted force, control architecture, type of uncertainty, and environment of conducted study. The effectiveness of reviewed techniques is highlighted for different dual-arm robotic manipulators. In the end, this paper discusses some of the challenges and future research directions in the field of grasp learning, materials, network communications, sensors, and intelligent controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable

Code Availability

Not applicable

References

  • Abbas, M., Dwivedy, S.K.: Adaptive control for networked uncertain cooperative dual-arm manipulators: an event-triggered approach. Robotica 40(6), 1951–1978 (2022)

    Google Scholar 

  • Abbas, M., Dwivedy, S.K.: Event-triggered adaptive backstepping admittance control for cooperative manipulation. Trans. Inst. Meas. Control 44(14), 2675–2692 (2022)

    Google Scholar 

  • Ahmad, U., Pan, Y.-J., Shen, H., Liu, S.: Cooperative control of mobile manipulators transporting an object based on an adaptive backstepping approach. In: 2018 IEEE 14th International Conference on Control and Automation (ICCA), pp. 198–203. IEEE

  • Almasarwah, N., Chen, Y., Suer, G., Yuan, T.: 29th international conference on flexible automation and intelligent manufacturing (faim2019), june 24-28, 2019, limerick, ireland (2019)

  • Alonso-Mora, J., Knepper, R., Siegwart, R., Rus, D.: Local motion planning for collaborative multi-robot manipulation of deformable objects. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5495–5502 (2015). IEEE

  • Ambrose, R.O., Aldridge, H., Askew, R.S., Burridge, R.R., Bluethmann, W., Diftler, M., Lovchik, C., Magruder, D., Rehnmark, F.: Robonaut: Nasa’s space humanoid. IEEE Intell. Syst. Appl. 15(4), 57–63 (2000)

    Google Scholar 

  • Amer, Y., Doan, L.T.T., et al.: Partial soft body robots-a literature review. In: IOP Conference Series: Materials Science and Engineering, vol. 715, p. 012092 (2020). IOP Publishing

  • Arriola-Rios, V.E., Guler, P., Ficuciello, F., Kragic, D., Siciliano, B., Wyatt, J.L.: Modeling of deformable objects for robotic manipulation: a tutorial and review. Front. Robot. AI 7, 82 (2020)

    Google Scholar 

  • Asfour, T., Waechter, M., Kaul, L., Rader, S., Weiner, P., Ottenhaus, S., Grimm, R., Zhou, Y., Grotz, M., Paus, F.: Armar-6: a high-performance humanoid for human-robot collaboration in real-world scenarios. IEEE Robot. Autom. Mag. 26(4), 108–121 (2019)

    Google Scholar 

  • Babin, V., Gosselin, C.: Mechanisms for robotic grasping and manipulation. Annu. Rev. Control Robot. Auton. Syst. 4, 573–593 (2021)

    Google Scholar 

  • Baigzadehnoe, B., Rahmani, Z., Khosravi, A., Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)

    Google Scholar 

  • Bandala, M., West, C., Monk, S., Montazeri, A., Taylor, C.J.: Vision-based assisted tele-operation of a dual-arm hydraulically actuated robot for pipe cutting and grasping in nuclear environments. Robotics 8(2), 42 (2019)

    Google Scholar 

  • Barber, R., Ortiz, F.J., Garrido, S., Calatrava-Nicolás, F.M., Mora, A., Prados, A., Vera-Repullo, J.A., Roca-González, J., Méndez, I., Mozos, Ó.M.: A multirobot system in an assisted home environment to support the elderly in their daily lives. Sensors 22(20), 7983 (2022)

    Google Scholar 

  • Bäuml, B., Schmidt, F., Wimböck, T., Birbach, O., Dietrich, A., Fuchs, M., Friedl, W., Frese, U., Borst, C., Grebenstein, M., et al.: Catching flying balls and preparing coffee: Humanoid rollin’justin performs dynamic and sensitive tasks. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3443–3444 (2011). IEEE

  • Beetz, M., Klank, U., Maldonado, A., Pangercic, D., Rühr, T.: Robotic roommates making pancakes-look into perception-manipulation loop. In: IEEE International Conference on Robotics and Automation (ICRA), Workshop on Mobile Manipulation: Integrating Perception and Manipulation, pp. 9–13 (2011)

  • Bell, M.P.: Flexible Object Manipulation. Dartmouth College, Hanover (2010)

    Google Scholar 

  • Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 348–353. IEEE (2000)

  • Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16(6), 652–662 (2000)

    Google Scholar 

  • Billard, A., Kragic, D.: Trends and challenges in robot manipulation. Science 364(6446), 8414 (2019)

    Google Scholar 

  • Bjerkeng, M., Schrimpf, J., Myhre, T., Pettersen, K.Y.: Fast dual-arm manipulation using variable admittance control: Implementation and experimental results. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4728–4734. IEEE

  • Bonitz, R., Hsia, T.C.: Internal force-based impedance control for cooperating manipulators. IEEE Trans. Robot. Autom. 12(1), 78–89 (1996)

    Google Scholar 

  • Brantner, G., Khatib, O.: Controlling ocean one. In: Field and Service Robotics, pp. 3–17. Springer (2017)

  • Brost, R.C.: Automatic grasp planning in the presence of uncertainty. Int. J. Robot. Res. 7(1), 3–17 (1988)

    Google Scholar 

  • Buss, M., Kuschel, M., Lee, K.-K., Peer, A., Stanczyk, B., Unterhinninghofen, U.: High fidelity telepresence systems: design, control, and evaluation. In: Joint International COE/HAM SFB-453 Workshop on Human Adaptive Mechatronics and High-Fidelity Telepresence, Tokyo, Japan

  • Byrne, S., Naeem, W., Ferguson, S.: Improved apf strategies for dual-arm local motion planning. Trans. Inst. Meas. Control 37(1), 73–90 (2015)

    Google Scholar 

  • Caccavale, F., Uchiyama, M.: Cooperative manipulation. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 1st edn., pp. 989–1006. Springer, Cham (2016)

    Google Scholar 

  • Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)

    Google Scholar 

  • Cai, C., Wang, B., Li, Y.: Research on cooperative work path planning method based on double 6-dof manipulators. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 12–17. IEEE

  • Cao, P., Gan, Y., Duan, J., Dai, X.: Time-optimal path tracking for coordinated dual-robot system using sequential convex programming. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 1520–1525. IEEE

  • Caro, S., Chevallereau, C., Remus, A.: Manipulating deformable objects with a dual-arm robot. In: ROBOVIS 2021: 2nd International Conference on Robotics, Computer Vision and Intelligent Systems, pp. 48–56 (2021)

  • Chang, W.-C.: Robotic assembly of smartphone back shells with eye-in-hand visual servoing. Robot. Comput.-Integr. Manuf. 50, 102–113 (2018)

    Google Scholar 

  • Chen, B.-H., Wang, Y.-H., Lin, P.-C.: A hybrid control strategy for dual-arm object manipulation using fused force/position errors and iterative learning. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 39–44. IEEE

  • Chen, T.L., Kemp, C.C.: A direct physical interface for navigation and positioning of a robotic nursing assistant. Adv. Robot. 25(5), 605–627 (2011)

    Google Scholar 

  • Chen, A.T.-Y., Wang, K.I.-K.: Robust computer vision chess analysis and interaction with a humanoid robot. Computers 8(1), 14 (2019)

    Google Scholar 

  • Chen, X., You, X., Jiang, J., Ye, J., Wu, H.: Trajectory planning of dual-robot cooperative assembly. Machines 10(8), 689 (2022)

    Google Scholar 

  • Choi, T.-Y., Do, H., Park, D., Kyungk, J.: Control of an industrial dual-arm robot in a narrow space where human workers are familiar with. In: ICINCO (2), pp. 339–344 (2019)

  • Choi, Y., Kim, D., Hwang, S., Kim, H., Kim, N., Han, C.: Dual-arm robot motion planning for collision avoidance using b-spline curve. Int. J. Precis. Eng. Manuf. 18, 835–843 (2017)

    Google Scholar 

  • Chong, N.Y., Choi, D.-H., Suh, I.H.: Dextrous manipulation planning of multifingered hands with soft finger contact model. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3389–3396. IEEE

  • Claudio, G., Spindler, F., Chaumette, F.: Vision-based manipulation with the humanoid robot romeo. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 286–293. IEEE (2016)

  • Ćurković, P., Jerbić, B., Stipančić, T.: Coordination of robots with overlapping workspaces based on motion co-evolution. Int. J. Simul. Model. 12(1), 27–38 (2013)

    Google Scholar 

  • Dauchez, P.: Co-ordinated control of two cooperative manipulators: the use of a kinematic model. In: 15th ISIR, pp. 641–648

  • Deng, Z., Jonetzko, Y., Zhang, L., Zhang, J.: Grasping force control of multi-fingered robotic hands through tactile sensing for object stabilization. Sensors 20(4), 1050 (2020)

    Google Scholar 

  • Devol, J.G.C.: Programmed article transfer (US 2,988,237, Jun. 1961)

  • Deylami, A., Izadbakhsh, A.: Fat-based robust adaptive control of cooperative multiple manipulators without velocity measurement. Robotica 40(6), 1732–1762 (2022)

    Google Scholar 

  • Dong, Y., He, W., Kong, L., Hua, X.: Impedance control for coordinated robots by state and output feedback. IEEE Trans. Syst. Man Cybern. Syst. 51(8), 5056–5066 (2019)

    Google Scholar 

  • Erhart, S., Hirche, S.: Adaptive force/velocity control for multi-robot cooperative manipulation under uncertain kinematic parameters. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 307–314. IEEE

  • Fan, Y., Zhu, Z., Li, Z., Yang, C.: Neural adaptive with impedance learning control for uncertain cooperative multiple robot manipulators. Eur. J. Control, 100769 (2023)

  • Fan, Q., Gong, Z., Zhang, S., Tao, B., Yin, Z., Ding, H.: A vision-based fast base frame calibration method for coordinated mobile manipulators. Robot. Comput.-Integr. Manuf. 68, 102078 (2021)

    Google Scholar 

  • Farahmandrad, M., Ganjefar, S., Talebi, H.A., Bayati, M.: Fuzzy sliding mode controller design for a cooperative robotic system with uncertainty for handling an object. J. Dyn. Syst. Meas. Contr. 141(6), 061010 (2019)

    Google Scholar 

  • Frantz, J.C., Rincon, L.M., Simas, H., Martins, D.: Wrench distribution of a cooperative robotic system using a modified scaling factor method. J. Braz. Soc. Mech. Sci. Eng. 40(4), 177 (2018)

    Google Scholar 

  • Freddi, A., Longhi, S., Monteriù, A., Ortenzi, D.: Redundancy analysis of cooperative dual-arm manipulators. Int. J. Adv. Robot. Syst. 13(5), 1729881416657754 (2016)

    Google Scholar 

  • Fuchs, M., Borst, C., Giordano, P.R., Baumann, A., Kraemer, E., Langwald, J., Gruber, R., Seitz, N., Plank, G., Kunze, K.: Rollin’justin-design considerations and realization of a mobile platform for a humanoid upper body. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4131–4137. IEEE

  • Gan, Y., Duan, J., Chen, M., Dai, X.: Multi-robot trajectory planning and position/force coordination control in complex welding tasks. Appl. Sci. 9(5), 924 (2019)

    Google Scholar 

  • Garate, V.R., Gholami, S., Ajoudani, A.: A scalable framework for multi-robot tele-impedance control. IEEE Trans. Robot. 37(6), 2052–2066 (2021)

    Google Scholar 

  • Gaytán, A., Sanchez-Magos, M., Cruz-Ortiz, D., Ballesteros-Escamilla, M., Salgado, I., Chairez, I.: Adaptive proportional derivative controller of cooperative manipulators. IFAC-PapersOnLine 51(22), 232–237 (2018)

    Google Scholar 

  • Gillini, G., Di Lillo, P., Arrichiello, F., Di Vito, D., Marino, A., Antonelli, G., Chiaverini, S.: A dual-arm mobile robot system performing assistive tasks operated via p300-based brain computer interface. Indu. Robot Int. J. Robot. Res. Appl. 49(1), 11–20 (2022)

    Google Scholar 

  • Goertz, R.C.: Fundamentals of general-purpose remote manipulators. Nucleonics 10(11), 36–42 (1952)

    Google Scholar 

  • Gudiño-Lau, J., Arteaga, M.A.: Dynamic model and simulation of cooperative robots: a case study. Robotica 23(5), 615–624 (2005)

    Google Scholar 

  • Hafez, A.A., Mithun, P., Anurag, V., Shah, S., Krishna, K.M.: Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks. Robot. Auton. Syst. 91, 1–10 (2017)

    Google Scholar 

  • Haidegger, T.: Advanced robotic arms in space. In: 55th International Astronautical Congress, pp. 1–10. International Astronautical Federation Vancouver, Canada (2004)

  • Han, S., See, W., Lee, J., Lee, M., Hashimoto, H.: Image-based visual servoing control of a scara type dual-arm robot. In: ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No. 00TH8543), vol. 2, pp. 517–522. IEEE

  • Hanai, H., Hirogaki, T., Ozawa, M., Aoyama, E.: Investigation of autonomous cooperation between industrial cooperative humanoid robot and passive balancer. Int. J. Mech. Eng. Robot. Res. 11(12) (2022)

  • Hayati, S.: Hybrid position/force control of multi-arm cooperating robots. In: Proceedings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 82–89. IEEE (1986)

  • Hazarika, S.M.: Qualgrasp-grasp synthesis through qualitative reasoning. International Journal of Computational Cognition (Http://www. ijcc. us) 6(3), 1 (2008)

  • Hogan, N.: Impedance control; an approach to manipulation parts i-iii. ASME J. Dyn. Syst. Meas. Control (1985)

  • Hsu, P.: Coordinated control of multiple manipulator systems. IEEE Trans. Robot. Autom. 9(4), 400–410 (1993)

    MathSciNet  Google Scholar 

  • Hu, H., Cao, J.: Adaptive variable impedance control of dual-arm robots for slabstone installation. ISA Transactions (2021)

  • Hu, Z., Wan, W., Harada, K.: Designing a mechanical tool for robots with two-finger parallel grippers. IEEE Robot. Autom. Lett. 4(3), 2981–2988 (2019)

    Google Scholar 

  • Huang, Y., Zhang, X., Chen, X., Ota, J.: Vision-guided peg-in-hole assembly by baxter robot. Adv. Mech. Eng. 9(12), 1687814017748078 (2017)

    Google Scholar 

  • Huebner, K., Welke, K., Przybylski, M., Vahrenkamp, N., Asfour, T., Kragic, D., Dillmann, R.: Grasping known objects with humanoid robots: a box-based approach. In: 2009 International Conference on Advanced Robotics, pp. 1–6. IEEE

  • Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Google Scholar 

  • Iwata, H., Sugano, S.: Design of human symbiotic robot twendy-one. In: 2009 IEEE International Conference on Robotics and Automation, pp. 580–586. IEEE

  • Jau, B.: Anthropomorhic exoskeleton dual arm/hand telerobot controller. In: IEEE International Workshop on Intelligent Robots, pp. 715–718. IEEE (1988)

  • Jiang, Y., Liu, Z., Chen, C., Zhang, Y.: Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity. Nonlinear Dyn. 81(3), 1301–1314 (2015)

    MathSciNet  MATH  Google Scholar 

  • Jing, X., Gao, H., Chen, Z., Wang, Y.: A recursive dynamic modeling and control for dual-arm manipulator with elastic joints. IEEE Access 8, 155093–155102 (2020)

    Google Scholar 

  • Jing, X., Gao, H., Wang, Y., Chen, Z.: Cooperative compliance control of the dual-arm manipulators with elastic joints. J. Mech. Sci. Technol. 35, 5689–5697 (2021)

    Google Scholar 

  • Jinjun, D., Yahui, G., Ming, C., Xianzhong, D.: Symmetrical adaptive variable admittance control for position/force tracking of dual-arm cooperative manipulators with unknown trajectory deviations. Robot. Comput.-Integr. Manuf. 57, 357–369 (2019)

    Google Scholar 

  • Joo, Y.H., Tien, L.Q., Duong, P.X.: Adaptive neural network second-order sliding mode control of dual arm robots. Int. J. Control Autom. Syst. 15(6), 2883–2891 (2017)

    Google Scholar 

  • Karmakar, S., Sarkar, A.: Design and Implementation of Bio-Inspired Soft Robotic Grippers, pp. 1–6 (2019)

  • Kazhoyan, G., Stelter, S., Kenfack, F.K., Koralewski, S., Beetz, M.: The robot household marathon experiment. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9382–9388 (2021). IEEE

  • Kim, Y., Fan, S.C., Han, S., Go, H.: Image-based visual feedback control of a dual-arm robot. In: ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), vol. 3, pp. 1603–1608. IEEE

  • Kim, D.-E., Park, D.-J., Park, J.-H., Lee, J.-M.: Collision and singularity avoidance path planning of 6-dof dual-arm manipulator. In: International Conference on Intelligent Robotics and Applications, pp. 195–207. Springer (2018)

  • Koivo, A.J., Bekey, G.A.: Report of workshop on coordinated multiple robot manipulators-planning, control, and applications. IEEE J. Robot. Autom. 4(1), 91–93 (1988)

    Google Scholar 

  • Kurono, S.: Cooperative control of two artificial hands by a mini-computer. In: in Pepr.15th Joint Conferece on Automatic Control, pp. 365–366 (1972)

  • Kurosu, J., Yorozu, A., Takahashi, M.: Simultaneous dual-arm motion planning for minimizing operation time. Appl. Sci. 7(12), 1210 (2017)

    Google Scholar 

  • Larsen, L., Kim, J.: Path planning of cooperating industrial robots using evolutionary algorithms. Robot. Comput.-Integr. Manuf. 67, 102053 (2021)

    Google Scholar 

  • LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)

  • Lee, D.-H., Choi, M.-S., Park, H., Jang, G.-R., Park, J.-H., Bae, J.-H.: Peg-in-hole assembly with dual-arm robot and dexterous robot hands. IEEE Robot. Autom. Lett. 7(4), 8566–8573 (2022)

    Google Scholar 

  • Li, X., Wu, L.: Impact motion control of a flexible dual-arm space robot for capturing a spinning object. Int. J. Adv. Rob. Syst. 16(3), 1729881419857534 (2019)

    Google Scholar 

  • Li, Z., Yang, C., Su, C.-Y., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2014)

    Google Scholar 

  • Li, Y., Yang, C., Yan, W., Cui, R., Annamalai, A.: Admittance-based adaptive cooperative control for multiple manipulators with output constraints. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3621–3632 (2019)

    MathSciNet  Google Scholar 

  • Liang, J., Xu, Z., Zhou, X., Li, S., Ye, G.: Recurrent neural networks-based collision-free motion planning for dual manipulators under multiple constraints. IEEE Access 8, 54225–54236 (2020)

    Google Scholar 

  • Lin, L., Yang, Y., Song, Y., Nemec, B., Ude, A., Rytz, J.A., Buch, A.G., Krüger, N., Savarimuthu, T.R.: Peg-in-hole assembly under uncertain pose estimation. In: Proceedings of the 11th World Congress on Intelligent Control and Automation, pp. 2842–2847. IEEE (2014)

  • Lippiello, V., Siciliano, B., Villani, L.: An experimental setup for visual servoing applications on an industrial robotic cell. In: Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., pp. 1431–1436. IEEE

  • Liu, Y., Yang, Y., Peng, Y., Zhong, S., Liu, N., Pu, H.: A light soft manipulator with continuously controllable stiffness actuated by a thin mckibben pneumatic artificial muscle. IEEE/ASME Trans. Mechatron (2020)

  • Liu, X., Zhang, P., Du, G.: Hybrid adaptive impedance-leader-follower control for multi-arm coordination manipulators. Ind. Robot Int. J. 43(1), 112–120 (2016)

    Google Scholar 

  • Liu, X., Xu, X., Zhu, Z., Jiang, Y.: Dual-arm coordinated control strategy based on modified sliding mode impedance controller. Sensors 21(14), 4653 (2021)

    Google Scholar 

  • Liza Ahmad Shauri, R., Nonami, K.: Assembly manipulation of small objects by dual-arm manipulator. Assem. Autom. 31(3), 263–274 (2011)

    Google Scholar 

  • Lu, Q., Van der Merwe, M., Sundaralingam, B., Hermans, T.: Multi-fingered grasp planning via inference in deep neural networks. arXiv preprint arXiv:2001.09242 (2020)

  • Lundberg, C.L., Sevil, H.E., Behan, D., Popa, D.O.: Robotic nursing assistant applications and human subject tests through patient sitter and patient walker tasks. Robotics 11(3), 63 (2022)

    Google Scholar 

  • Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2308–2315. IEEE

  • Markvicka, E.J., Rogers, J.M., Majidi, C.: Wireless electronic skin with integrated pressure and optical proximity sensing. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8882–8888 (2020). IEEE

  • McClamroch, N.: Singular systems of differential equations as dynamic models for constrained robot systems. In: Proceedings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 21–28. IEEE (1986)

  • Medjram, S., Brethe, J.-F., Benali, K.: Markerless vision-based one cardboard box grasping using dual arm robot. Multimed. Tools Appl. 79(31–32), 22617–22633 (2020)

    Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P.: Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med 6(7), 1000097 (2009)

  • Monfaredi, R., Rezaei, S.M., Talebi, A.: A new observer-based adaptive controller for cooperative handling of an unknown object. Robotica 34(7), 1437–1463 (2016)

    Google Scholar 

  • Motoda, T., Petit, D., Nishi, T., Nagata, K., Wan, W., Harada, K.: Shelf replenishment based on object arrangement detection and collapse prediction for bimanual manipulation. Robotics 11(5), 104 (2022)

    Google Scholar 

  • Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (2017)

    Google Scholar 

  • Nakai, H., Yamataka, M., Kuga, T., Kuge, S., Tadano, H., Nakanishi, H., Furukawa, M., Ohtsuka, H.: Development of dual-arm robot with multi-fingered hands. In: ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 208–213. IEEE

  • Nakano, E.: Cooperational control of the anthropomorphous manipulator" melarm". In: Proceedings of 4th International Symposium on Industrial Robots, pp. 251–260 (1974)

  • Navarro-Alarcon, D., Liu, Y.-H.: Fourier-based shape servoing: a new feedback method to actively deform soft objects into desired 2-d image contours. IEEE Trans. Robot. 34(1), 272–279 (2017)

    Google Scholar 

  • Peng, J., Xu, W., Liang, B., Wu, A.-G.: Virtual stereovision pose measurement of noncooperative space targets for a dual-arm space robot. IEEE Trans. Instrum. Meas. (2019)

  • Peng, G., Yang, C., He, W., Chen, C.P.: Force sensorless admittance control with neural learning for robots with actuator saturation. IEEE Trans. Industr. Electron. 67(4), 3138–3148 (2019)

    Google Scholar 

  • Pham, D.T., Van Nguyen, T., Le, H.X., Nguyen, L., Thai, N.H., Phan, T.A., Pham, H.T., Duong, A.H., Bui, L.T.: Adaptive neural network based dynamic surface control for uncertain dual arm robots. Int. J. Dyn. Control 8(3), 824–834 (2020)

    MathSciNet  Google Scholar 

  • Pierri, F., Nigro, M., Muscio, G., Caccavale, F.: Cooperative manipulation of an unknown object via omnidirectional unmanned aerial vehicles. J. Intell. Robot. Syst. 100(3), 1635–1649 (2020)

    Google Scholar 

  • Pliego-Jimenez, J., Arteaga-Perez, M.: On the adaptive control of cooperative robots with time-variant holonomic constraints. Int. J. Adapt. Control Signal Process. 31(8), 1217–1231 (2017)

    MathSciNet  MATH  Google Scholar 

  • Polverini, M.P., Zanchettin, A.M., Rocco, P.: A constraint-based programming approach for robotic assembly skills implementation. Robot. Comput.-Integr. Manuf. 59, 69–81 (2019)

    Google Scholar 

  • Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 1st edn., pp. 955–988. Springer, Cham (2016)

    Google Scholar 

  • Prianto, E., Kim, M., Park, J.-H., Bae, J.-H., Kim, J.-S.: Path planning for multi-arm manipulators using deep reinforcement learning: soft actor-critic with hindsight experience replay. Sensors 20(20), 5911 (2020)

    Google Scholar 

  • Qu, J., Zhang, F., Fu, Y., Guo, S.: Multi-cameras visual servoing for dual-arm coordinated manipulation. Robotica 35(11), 2218–2237 (2017)

    Google Scholar 

  • Qu, J., Zhang, F., Wang, Y., Fu, Y.: Human-like coordination motion learning for a redundant dual-arm robot. Robot. Comput.-Integr. Manuf. 57, 379–390 (2019)

    Google Scholar 

  • Rani, M., Kumar, N.: A new hybrid position/force control scheme for coordinated multiple mobile manipulators. Arab. J. Sci. Eng. 44(3), 2399–2411 (2019)

    Google Scholar 

  • Ren, Y., Liu, Y., Jin, M., Liu, H.: Biomimetic object impedance control for dual-arm cooperative 7-dof manipulators. Robot. Auton. Syst. 75, 273–287 (2016)

    Google Scholar 

  • Ren, Y., Chen, Z., Liu, Y., Gu, Y., Jin, M., Liu, H.: Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. J. Franklin Inst. 354(17), 7767–7793 (2017)

    MathSciNet  MATH  Google Scholar 

  • Rincon, L.M., Saldias, D.A.P., Simas, H., Martins, D.: A grasp synthesis method for a three finger gripper. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp. 320–325. IEEE

  • Saharan, L., Wu, L., Tadesse, Y.: Modeling and simulation of robotic finger powered by nylon artificial muscles. J. Mech. Robot. 12(1) (2020)

  • Salisbury, J.K., Mason, M.: Robot Hands and the Mechanics of Manipulation. MIT Press, Cambridge (1985)

    Google Scholar 

  • Schneider, S.A., Cannon, R.H.: Object impedance control for cooperative manipulation: theory and experimental results. IEEE Trans. Robot. Autom. 8(3), 383–394 (1992)

    Google Scholar 

  • SepúLveda, D., Fernández, R., Navas, E., Armada, M., González-De-Santos, P.: Robotic aubergine harvesting using dual-arm manipulation. IEEE Access 8, 121889–121904 (2020)

    Google Scholar 

  • Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. MIT Press, Massachusetts (1992)

    Google Scholar 

  • Shigemi, S., Goswami, A., Vadakkepat, P.: Asimo and humanoid robot research at honda. Humanoid robotics: A reference, 55–90 (2018)

  • Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2, pp. 1217–1222. IEEE

  • SPECIFICATIONS - NEXTAGE. http://nextage.kawada.jp/en/specification/. Accessed: 2023-02-08

  • Stolfi, A., Gasbarri, P., Misra, A.K.: A two-arm flexible space manipulator system for post-grasping manipulation operations of a passive target object. Acta Astronaut. (2020)

  • Stolfi, A., Gasbarri, P., Sabatini, M.: A combined impedance-pd approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronaut. 139, 243–253 (2017)

    Google Scholar 

  • Su, H., Schmirander, Y., Valderrama-Hincapie, S.E., Pinedo, J., Zhou, X., Li, J., Zhang, L., Hu, Y., Ferrigno, G., De Momi, E.: Asymmetric bimanual control of dual-arm serial manipulator for robot-assisted minimally invasive surgeries. Sens. Mater. 32(4), 1223–1233 (2020)

    Google Scholar 

  • Suarez, A., Jimenez-Cano, A.E., Vega, V.M., Heredia, G., Rodriguez-Castaño, A., Ollero, A.: Design of a lightweight dual arm system for aerial manipulation. Mechatronics 50, 30–44 (2018)

    Google Scholar 

  • Sun, L., Aragon-Camarasa, G., Rogers, S., Siebert, J.P.: Autonomous clothes manipulation using a hierarchical vision architecture. IEEE Access 6, 76646–76662 (2018)

    Google Scholar 

  • Sun, F., Chen, Y., Wu, Y., Li, L., Ren, X.: Motion planning and cooperative manipulation for mobile robots with dual arms. IEEE Trans. Emerg. Top. Comput. Intell. 6(6), 1345–1356 (2022)

    Google Scholar 

  • Tanner, H.G., Kyriakopoulos, K.J., Krikelis, N.J.: Modeling of multiple mobile manipulators handling a common deformable object. J. Robot. Syst. 15(11), 599–623 (1998)

    MATH  Google Scholar 

  • Tsurumine, Y., Cui, Y., Uchibe, E., Matsubara, T.: Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation. Robot. Auton. Syst. 112, 72–83 (2019)

    Google Scholar 

  • Turlapati, S.H., Campolo, D.: Towards haptic-based dual-arm manipulation. Sensors 23(1), 376 (2022)

    Google Scholar 

  • Uchiyama, M., Iwasawa, N., Hakomori, K.: Hybrid position/force control for coordination of a two-arm robot. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1242–1247. IEEE (1987)

  • Uchiyama, M., Yamashita, T.: Adaptive load sharing for hybrid controlled two cooperative manipulators. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp. 986–991. IEEE

  • Vahrenkamp, N., Do, M., Asfour, T., Dillmann, R.: Integrated grasp and motion planning. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2883–2888. IEEE

  • Van Nguyen, T., Thai, N.H., Pham, H.T., Phan, T.A., Nguyen, L., Le, H.X., Nguyen, H.D.: Adaptive neural network-based backstepping sliding mode control approach for dual-arm robots. J. Control Autom. Electr. Syst., 1–10 (2019)

  • Verginis, C.K., Mastellaro, M., Dimarogonas, D.V.: Robust cooperative manipulation without force/torque measurements: control design and experiments. IEEE Trans. Control Syst. Technol. 28(3), 713–729 (2019)

    Google Scholar 

  • Villalobos-Chin, J., Santibáñez, V.: An adaptive regressor-free fourier series-based tracking controller for robot manipulators: theory and experimental evaluation. Robotica, 1–16 (2021)

  • Villani, L., De Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 1st edn., pp. 195–220. Springer, Cham (2016)

    Google Scholar 

  • Völz, A., Graichen, K.: An optimization-based approach to dual-arm motion planning with closed kinematics. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8346–8351 (2018). IEEE

  • Wang, X., Chen, L.: A vision-based coordinated motion scheme for dual-arm robots. J. Intell. Robot. Syst., 1–13 (2019)

  • Wang, Y., Xu, Q.: Design and fabrication of a new dual-arm soft robotic manipulator. In: Actuators, vol. 8, p. 5. Multidisciplinary Digital Publishing Institute (2019)

  • Wang, J., Wang, W., Wu, C.-H., Chen, S.-L., Fu, J.-H., Lu, G.-D.: A plane projection based method for base frame calibration of cooperative manipulators. IEEE Trans. Industr. Inf. 15(3), 1688–1697 (2018)

    Google Scholar 

  • Wang, J., Liu, S., Zhang, B., Yu, C.: Inverse kinematics-based motion planning for dual-arm robot with orientation constraints. Int. J. Adv. Robot. Syst. 16(2), 1729881419836858 (2019)

    Google Scholar 

  • Wang, C., Zhang, Q., Tian, Q., Li, S., Wang, X., Lane, D., Petillot, Y., Wang, S.: Learning mobile manipulation through deep reinforcement learning. Sensors 20(3), 939 (2020)

    Google Scholar 

  • Wang, J., Zhai, A., Xu, F., Zhang, H., Lu, G.: Dual feedforward neural networks based synchronized sliding mode controller for cooperative manipulator system under variable load and uncertainties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234(19), 3859–3872 (2020)

    Google Scholar 

  • Wilson, J.: Robonaut: the next generation. Aerosp. Am. 48(8), 26–31 (2010)

    Google Scholar 

  • Wu, Y.-H., Yu, Z.-C., Li, C.-Y., He, M.-J., Hua, B., Chen, Z.-M.: Reinforcement learning in dual-arm trajectory planning for a free-floating space robot. Aerosp. Sci. Technol., 105657 (2020)

  • Xi, N., Tarn, T.-J., Bejczy, A.K.: Intelligent planning and control for multirobot coordination: an event-based approach. IEEE Trans. Robot. Autom. 12(3), 439–452 (1996)

    Google Scholar 

  • Xu, X., Li, Y., Du, Y., Cong, M., Liu, D.: Grasp planning for multi-fingered hand in blind grasping. In: 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 652–657. IEEE

  • Xu, Z., Zhou, X., Cheng, T., Sun, K., Huang, D.: Fuzzy-neural-network based position/force hybrid control for multiple robot manipulators. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 94–99. IEEE

  • Yahya, M.Y.B., Hui, Y.L., Yassin, A.B.M., Omar, R., anak Robin, R.O., Kasim, N.: The challenges of the implementation of construction robotics technologies in the construction. In: MATEC Web of Conferences, vol. 266, p. 05012. EDP Sciences (2019)

  • Yamano, M., Kim, J.-S., Konno, A., Uchiyama, M.: Cooperative control of a 3d dual-flexible-arm robot. J. Intell. Robot. Syst. 39(1), 1–15 (2004)

    Google Scholar 

  • Yoshikawa, T.: Multifingered robot hands: control for grasping and manipulation. Annu. Rev. Control. 34(2), 199–208 (2010)

    Google Scholar 

  • Zaidi, L., Corrales Ramon, J.A., Sabourin, L., Bouzgarrou, B.C., Mezouar, Y.: Grasp planning pipeline for robust manipulation of 3d deformable objects with industrial robotic hand+ arm systems. Appl. Sci. 10(23), 8736 (2020)

    Google Scholar 

  • Zereik, E., Sorbara, A., Casalino, G., Didot, F.: Autonomous dual-arm mobile manipulator crew assistant for surface operations: force/vision-guided grasping. In: 2009 4th International Conference on Recent Advances in Space Technologies, pp. 710–715. IEEE

  • Zhai, J., Pan, G., Yan, W., Fu, Z., Zhao, Y.: Dynamic analysis of a dual-arm humanoid cooking robot. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 835–838 (2015). IEEE

  • Zhai, A., Zhang, H., Wang, J., Lu, G., Li, J., Chen, S.: Adaptive neural synchronized impedance control for cooperative manipulators processing under uncertain environments. Robot. Comput.-Integr. Manuf. 75, 102291 (2022)

    Google Scholar 

  • Zhang, S., Wu, Y., He, X., Wang, J.: Neural network-based cooperative trajectory tracking control for a mobile dual flexible manipulator. IEEE Transactions on Neural Networks and Learning Systems (2022)

  • Zhang, H., Zhu, Y., Liu, X., Xu, X.: Analysis of obstacle avoidance strategy for dual-arm robot based on speed field with improved artificial potential field algorithm. Electronics 10(15), 1850 (2021)

    Google Scholar 

  • Zhao, W., Liu, Y., Yao, X.: Adaptive fuzzy containment and vibration control for multiple flexible manipulators with model uncertainties. IEEE Trans. Fuzzy Syst. (2022)

  • Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., Kumar, V.: Dexterous manipulation with deep reinforcement learning: Efficient, general, and low-cost. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3651–3657. IEEE

  • Zhu, J., Navarro, B., Fraisse, P., Crosnier, A., Cherubini, A.: Dual-arm robotic manipulation of flexible cables. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 479–484. IEEE

  • Zhu, J., Cherubini, A., Dune, C., Navarro-Alarcon, D., Alambeigi, F., Berenson, D., Ficuciello, F., Harada, K., Kober, J., Li, X., et al.: Challenges and outlook in robotic manipulation of deformable objects. IEEE Robot. Autom. Mag. 29(3), 67–77 (2022)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank Al-Baath University, Ministry of Higher Education, Syrian Arab Republic for their support during the higher studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M., Narayan, J. & Dwivedy, S.K. A systematic review on cooperative dual-arm manipulators: modeling, planning, control, and vision strategies. Int J Intell Robot Appl 7, 683–707 (2023). https://doi.org/10.1007/s41315-023-00292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-023-00292-0

Keywords

Navigation