Skip to main content
Log in

Polygalic acid inhibits african swine fever virus polymerase activity: findings from machine learning and in vitro testing

  • Original Research
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

African swine fever virus (ASFV), an extremely contagious virus with high mortality rates, causes severe hemorrhagic viral disease in both domestic and wild pigs. Fortunately, ASFV cannot be transmitted from pigs to humans. However, ongoing ASFV outbreaks could have severe economic consequences for global food security. Although ASFV was discovered several years ago, no vaccines or treatments are commercially available yet; therefore, the identification of new anti-ASFV drugs is urgently warranted. Using molecular docking and machine learning, we have previously identified pentagastrin, cangrelor, and fostamatinib as potential antiviral drugs against ASFV. Here, using machine learning combined with docking simulations, we identified natural products with a high affinity for AsfvPolX proteins. We selected five natural products (NPs) that are located close in chemical space to the six known natural flavonoids that possess anti-ASFV activity. Polygalic acid markedly reduced AsfvPolX polymerase activity in a dose-dependent manner. We propose an efficient protocol for identifying NPs as potential antiviral drugs by identifying chemical spaces containing high-affinity binders against ASFV in NP databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso C, Borca M, Dixon L et al (2018) ICTV Virus Taxonomy Profile: Asfarviridae. J Gen Virol 99:613–614. https://doi.org/10.1099/jgv.0.001049

    Article  CAS  PubMed  Google Scholar 

  2. Sánchez-Cordón PJ, Montoya M, Reis AL, Dixon LK (2018) African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J 233:41–48. https://doi.org/10.1016/j.tvjl.2017.12.025

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frant M, Woźniakowski G, Pejsak Z (2017) African swine fever (ASF) and ticks. No risk of Tick-mediated ASF spread in Poland and Baltic States. J Vet Res 61:375–380. https://doi.org/10.1515/jvetres-2017-0055

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang G, Xie M, Wu W, Chen Z (2021) Structures and functional diversities of ASFV Proteins. Viruses 13:2124. https://doi.org/10.3390/v13112124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Kang W, Yang W et al (2021) Structure of African Swine Fever Virus and Associated Molecular Mechanisms underlying infection and immunosuppression: a review. Front Immunol 12:715582. https://doi.org/10.3389/fimmu.2021.715582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L (2015) An update on the epidemiology and pathology of african swine fever. J Comp Pathol 152:9–21. https://doi.org/10.1016/j.jcpa.2014.09.003

    Article  PubMed  Google Scholar 

  7. Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z (2016) African swine fever virus: a new old enemy of Europe. Ann Parasitol 62:161–167. https://doi.org/10.17420/ap6203.49

    Article  PubMed  Google Scholar 

  8. Plotkin SA, Plotkin SL (2011) The development of vaccines: how the past led to the future. Nat Rev Microbiol 9:889–893. https://doi.org/10.1038/nrmicro2668

    Article  CAS  PubMed  Google Scholar 

  9. Wang T, Sun Y, Qiu H-J (2018) African swine fever: an unprecedented disaster and challenge to China. Infect Dis Poverty 7:111. https://doi.org/10.1186/s40249-018-0495-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sánchez EG, Pérez-Núñez D, Revilla Y (2019) Development of vaccines against african swine fever virus. Virus Res 265:150–155. https://doi.org/10.1016/j.virusres.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  11. Parker J, Plowright W, Pierce MA (1969) The epizootiology of african swine fever in Africa. Vet Rec 85:668–674

    CAS  PubMed  Google Scholar 

  12. Thomson GR, Gainaru MD, Van Dellen AF (1980) Experimental infection of warthos (Phacochoerus aethiopicus) with african swine fever virus. Onderstepoort J Vet Res 47:19–22

    CAS  PubMed  Google Scholar 

  13. Zakaryan H, Revilla Y (2016) African swine fever virus: current state and future perspectives in vaccine and antiviral research. Vet Microbiol 185:15–19. https://doi.org/10.1016/j.vetmic.2016.01.016

    Article  PubMed  Google Scholar 

  14. Arias M, de la Torre A, Dixon L et al (2017) Approaches and perspectives for development of african swine fever virus vaccines. Vaccines (Basel) 5:35. https://doi.org/10.3390/vaccines5040035

    Article  CAS  PubMed  Google Scholar 

  15. Hakobyan A, Arabyan E, Avetisyan A et al (2016) Apigenin inhibits african swine fever virus infection in vitro. Arch Virol 161:3445–3453. https://doi.org/10.1007/s00705-016-3061-y

    Article  CAS  PubMed  Google Scholar 

  16. Arabyan E, Hakobyan A, Kotsinyan A et al (2018) Genistein inhibits african swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res 156:128–137. https://doi.org/10.1016/j.antiviral.2018.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hakobyan A, Arabyan E, Kotsinyan A et al (2019) Inhibition of african swine fever virus infection by genkwanin. Antiviral Res 167:78–82. https://doi.org/10.1016/j.antiviral.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  18. Jo S, Kim S, Shin DH, Kim M-S (2020) Inhibition of african swine fever virus protease by myricetin and myricitrin. J Enzyme Inhib Med Chem 35:1045–1049. https://doi.org/10.1080/14756366.2020.1754813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arabyan E, Hakobyan A, Hakobyan T et al (2021) Flavonoid Library Screening reveals Kaempferol as a potential antiviral Agent against African Swine Fever Virus. Front Microbiol 12:736780. https://doi.org/10.3389/fmicb.2021.736780

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Chen S, Li X et al (2022) Flavonoids as potential antiviral agents for porcine viruses. Pharmaceutics 14:1793. https://doi.org/10.3390/pharmaceutics14091793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oliveros M, Yáñez RJ, Salas ML et al (1997) Characterization of an african swine fever virus 20-kDa DNA polymerase involved in DNA repair. J Biol Chem 272:30899–30910. https://doi.org/10.1074/jbc.272.49.30899

    Article  CAS  PubMed  Google Scholar 

  22. Showalter AK, Tsai MD (2001) A DNA polymerase with specificity for five base pairs. J Am Chem Soc 123:1776–1777. https://doi.org/10.1021/ja005758x

    Article  CAS  PubMed  Google Scholar 

  23. Lamarche BJ, Showalter AK, Tsai M-D (2005) An error-prone viral DNA ligase. Biochemistry 44:8408–8417. https://doi.org/10.1021/bi047706g

    Article  CAS  PubMed  Google Scholar 

  24. Lamarche BJ, Tsai M-D (2006) Contributions of an endonuclease IV homologue to DNA repair in the african swine fever virus. Biochemistry 45:2790–2803. https://doi.org/10.1021/bi051772g

    Article  CAS  PubMed  Google Scholar 

  25. Boshoff CI, Bastos ADS, Gerber LJ, Vosloo W (2007) Genetic characterisation of african swine fever viruses from outbreaks in southern Africa (1973–1999). Vet Microbiol 121:45–55. https://doi.org/10.1016/j.vetmic.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  26. Achenbach JE, Gallardo C, Nieto-Pelegrín E et al (2017) Identification of a new genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia. Transbound Emerg Dis 64:1393–1404. https://doi.org/10.1111/tbed.12511

    Article  CAS  PubMed  Google Scholar 

  27. García-Escudero R, García-Díaz M, Salas ML et al (2003) DNA polymerase X of african swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA. J Mol Biol 326:1403–1412. https://doi.org/10.1016/s0022-2836(03)00019-6

    Article  PubMed  Google Scholar 

  28. Redrejo-Rodríguez M, García-Escudero R, Yáñez-Muñoz RJ et al (2006) African swine fever virus protein pE296R is a DNA repair apurinic/apyrimidinic endonuclease required for virus growth in swine macrophages. J Virol 80:4847–4857. https://doi.org/10.1128/JVI.80.10.4847-4857.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Zhang J, Liu H et al (2017) Unique 5’-P recognition and basis for dG:dGTP misincorporation of ASFV DNA polymerase X. PLoS Biol 15:e1002599. https://doi.org/10.1371/journal.pbio.1002599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi J, Yun JS, Song H et al (2021) Prediction of african swine fever virus inhibitors by Molecular Docking-Driven Machine Learning Models. Molecules 26:3592. https://doi.org/10.3390/molecules26123592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi J, Tark D, Lim Y-S, Hwang SB (2021) Identification of african swine fever virus inhibitors through high performance virtual screening using machine learning. Int J Mol Sci 22:13414. https://doi.org/10.3390/ijms222413414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354. https://doi.org/10.1016/j.cbpa.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu J, Gui Y, Chen L et al (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 8:e62839. https://doi.org/10.1371/journal.pone.0062839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen CY-C (2011) TCM Database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLoS ONE 6:e15939. https://doi.org/10.1371/journal.pone.0015939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sterling T, Irwin JJ (2015) ZINC 15–Ligand Discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52

    Article  CAS  Google Scholar 

  37. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  38. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  39. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  40. Monto AS (2006) Vaccines and antiviral drugs in pandemic preparedness. Emerg Infect Dis 12:55–60. https://doi.org/10.3201/eid1201.051068

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhu Z, Fan Y, Liu Y et al (2020) Prediction of antiviral drugs against african swine fever viruses based on protein-protein interaction analysis. PeerJ 8:e8855. https://doi.org/10.7717/peerj.8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Redrejo-Rodríguez M, Rodríguez JM, Suárez C et al (2013) Involvement of the reparative DNA polymerase Pol X of African Swine Fever Virus in the maintenance of viral Genome Stability in vivo. J Virol 87:9780–9787. https://doi.org/10.1128/JVI.01173-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the National Research Foundation of Korea (NRF-2018R1D1A1B07050744 and NRF-2022R1A2B5B01001390) funded by the government of South Korea (MSIT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.C. and Y.-S.L.; Methodology, software, and experiments, J.C., H.L., S.C., Y.C., T.P., T.X.P., and Y.-S.L.; Writing of the manuscript, J.C., H.L., S.C., Y.C., T.X.P., Y.-S.L., and Y.-S.L.; Review and editing, J.C., Y.-S.L. and S.B.H.; Project administration and supervision, J.C., Y.-S.L., and S.B.H. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jiwon Choi or Yun-Sook Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Lee, H., Cho, S. et al. Polygalic acid inhibits african swine fever virus polymerase activity: findings from machine learning and in vitro testing. J Comput Aided Mol Des 37, 453–461 (2023). https://doi.org/10.1007/s10822-023-00520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00520-6

Keywords

Navigation