Skip to main content

Advertisement

Log in

Codon usage bias analysis of mitochondrial protein-coding genes in 12 species of Candida

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The incidence of diseases that are caused by fungal infection is gradually increasing, together with antibiotic abuse and the number of patients with hypoimmunity. The many challenges in clinical anti-fungi treatment include serious adverse effects and drug resistance. The mitochondria of fungi have been found to be closely associated with pathopoiesia and drug resistance. Hence, we investigated patterns in Candida mitochondrial genes codon usage bias to provide new information to guide anti-fungal research. According to the nucleotide composition results, most mitochondrial genes of the analysed Candida tended to use A/T bases rather than G/C bases. The relative synonymous codon usage values demonstrated that UUA, AGU, CCU, GCU, UGA, AGA and GGU were the common preferential codons of mitochondrial genes in 12 Candida species. Codon adaptation index (CAI) analysis indicated that the ATP9 of Candida parapsilosis had the highest value, and the ND6 of C. auris had the lowest value. The CAI clearly correlated with the codon bias index, except in C. maltose and C. viswanathii, and was significantly positively correlated with the average GC content. Together, our results suggested that the codon usage pattern is affected by multiple factors, among which GC content is critical. Nucleotide composition, selection pressure and mutation pressure influence codon bias in Candida mitochondrial genes, with dominant status to mutation pressure. Codon usage bias analyses of Candida mitochondrial genes may provide new insight into its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bambach A., Fernandes M. P., Ghosh A., Kruppa M., Alex D., Li D. et al. 2009 Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot. Cell 8, 1706–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbhuiya R. I., Uddin A. and Chakraborty S. 2019 Compositional properties and codon usage pattern of mitochondrial ATP gene in different classes of arthropoda. Genetica 147, 231–248.

    Article  CAS  PubMed  Google Scholar 

  • Bulmer M. 1991 The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderone R., Li D. and Traven A. 2015 System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res. 15, fov027.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S., Uddin A., Mazumder T. H., Choudhury M. N., Malakar A. K., Paul P. et al. 2018 Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents. Mitochondrion 42, 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y. H. 2013 A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed. Res. Int. 2013, 1–10.

    Article  Google Scholar 

  • Choudhury M. N., Uddin A. and Chakraborty S. 2018 Nucleotide composition and codon usage bias of SRY gene. Andrologia 50, e12787.

    Article  Google Scholar 

  • Cleveland A. A., Harrison L. H., Farley M. M., Hollick R., Stein B., Chiller T. M. et al. 2015 Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–2013: results from population-based surveillance external icon. PLoS One 10, e0120452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deb B., Uddin A., Mazumder G. A. and Chakraborty S. 2018 Analysis of codon usage pattern of mitochondrial protein-coding genes in different hookworms. Mol. Biochem. Parasitol. 219, 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Fox J. M. and Erill I. 2010 Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res. 17, 185–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S. K., Bhattacharyya T. K. and Ghosh T. C. 2004 Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J. Biomol. Struct. Dyn. 21, 527–536.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins G. M. and Holmes E. C. 2003 The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 92, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Jia X., Liu S., Zheng H., Li B., Qi Q., Wei L. et al. 2015 Non-uniqueness of factors constraint on the codon usage in bombyx mori. BMC Genom. 16, 356.

    Article  Google Scholar 

  • Kamatani T. and Yamamoto T. 2006 Comparison of codon usage and tRNAs in mitochondrial genomes of Candida species. Biosystems 90, 362–370.

    Article  PubMed  Google Scholar 

  • Li W. H. 1987 Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J. Mol. Evol. 24, 337–345.

    Article  CAS  PubMed  Google Scholar 

  • Lockhart S. R., Etienne K. A., Vallabhaneni S., Farooqi J. and Chowdhary A. 2017 Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Malina C., Larsson C. and Nielsen J. 2018 Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res. 18, foy040.

    Article  CAS  Google Scholar 

  • Mazumder G. A., Uddin A. and Chakraborty S. 2017 Expression levels and codon usage patterns in nuclear genes of the filarial nematode Wucheraria bancrofti and the blood fluke Schistosoma haematobium. J. Helminthol. 91, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Murante D. and Hogan D. A. 2019 New mitochondrial targets in fungal pathogens. mBio. 10, e02258-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naya H., Romero H., Carels N., Zavala A. and Musto H. 2001 Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett. 501, 127–130.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Torrado R., Llopis S., Benedetta P., Rocio G. P., Bernhard H., Amparo Q. et al. 2015 Comparative genomic analysis reveals a critical role of de novo nucleotide biosynthesis for Saccharomyces cerevisiae virulence. PLoS One 10, e0122382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu Y., Jelicic B., Pettolino F., Perry A., Lo T. L., Hewitt V. L. et al. 2012 Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. Eukaryot. Cell 11, 532–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins N., Caplan T. and Cowen L. E. 2017 Molecular evolution of antifungal drug resistance. Ann. Rev. Microbiol. 71, 753–755.

    Article  CAS  Google Scholar 

  • Romero H., Zavala A. and Musto H. 2000 Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 28, 2084–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp P. M. and Li W. H. 1986 An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24, 28–38.

    Article  CAS  PubMed  Google Scholar 

  • Sharp P. M. and Li W. H. 1987a The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp P. M. and Li W. H. 1987b The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol. Biol. Evol. 4, 222–230.

    CAS  PubMed  Google Scholar 

  • Shields D. C. and Sharp P. M. 1987 Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 15, 8023–8040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shingu-Vazquez M. and Traven A. 2011 Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot. Cell 10, 1376–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siscar-Lewin S., Gabaldón T., Aldejohann A. M., Kurzai O., Hube B. and Brunke S. 2021 Transient mitochondria dysfunction confers fungal cross-resistance against phagocytic killing and fluconazole. mBio 12, e0112821.

    Article  PubMed  Google Scholar 

  • Thomas E., Roman E., Claypool S., Manzoor N., Pla J. and Panwar S. L. 2013 Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob. Agents Chemother. 57, 5580–5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda M., Williams S. R., Berkow E. L., Farley M. M. and Vallabhaneni S. 2019 Population-based active surveillance for culture-confirmed Candidemia-four sites, United States, 2012–2016. MMWR Surveill. Summ. 68, 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin A. and Chakraborty S. 2016 Codon usage trend in mitochondrial CYB gene. Gene 568, 105–114.

    Article  Google Scholar 

  • Uddin A., Mazumder H., Nath M. and Chakraborty S. 2015 Codon bias and gene expression of mitochondrial ND2 gene in chordates. Bioinformation 11, 407–412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin A., Choudhury M. N. and Chakraborty S. 2016 Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals. Mitochondrial DNA Part a. 29, 36–48.

    Article  Google Scholar 

  • Uddin A., Mazumder T. H. and Chakraborty S. 2019 Understanding molecular biology of codon usage in mitochondrial complex IV genes of electron transport system: relevance to mitochondrial diseases. J. Cell Physiol. 234, 6397–6413.

    Article  CAS  PubMed  Google Scholar 

  • Vasanthi S. and Dass J. F. P. 2018 Comparative genome-wide analysis of codon usage of different bacterial species infecting Oryza sativa. J. Cell Biochem. 119, 9346–9356.

    Article  CAS  PubMed  Google Scholar 

  • Wright F. 1990 The “effective number of codons” used in a gene. Gene 87, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Xu W., Xing T., Zhao M., Yin X., Xia G. and Wang M. 2015 Synonymous codon usage bias in plant mitochondrial genes is associated with intron number and mirrors species evolution. PLoS One 10, e0131508.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the Sichuan Science and Technology Programme (2023NSFSC1698, 2023NSFSC0529, 2022NSFSC1539, and 2022YFS0629) and Luzhou (2022-JYJ-159 and 2021-JYJ-73), the Technology Strategic Cooperation Project of Luzhou Municipal People’s Government Southwest Medical University (2020LZXNYDJ38 and 2020LZXNYDJ23), and the Foundation of Southwest Medical University (2021ZKQN123, 2022QN042, 2022QN085, 2022QN102, and 2022QN118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhangyong Song or Caiyan Xin.

Additional information

Corresponding editor: Steven M. Carr

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, N., Zhao, C. et al. Codon usage bias analysis of mitochondrial protein-coding genes in 12 species of Candida. J Genet 102, 36 (2023). https://doi.org/10.1007/s12041-023-01434-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01434-w

Keywords

Navigation