Skip to main content

Advertisement

Log in

The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) exposures have increased exponentially in recent years due to the rise in diagnostic and therapeutic interventions. A number of small-scale studies investigated the long-term effect of IR on health workers or immediate effects of IR on patients undergoing catheterization procedures; however, the long-term impact of multiple cardiac catheterizations on DNA damage on a patient population is not known. In this study, the effects of IR on DNA damage, based on micronuclei (MN) frequency and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as markers in peripheral lymphocytes, were evaluated in patients who previously underwent multiple cardiac catheterization procedures. Moreover, genetic polymorphisms in genes PARP1 Val762Ala, OGG1 Ser326Cys, and APE1 Asn148Glu as a measure of sensitivity to radiation exposure were also investigated in the same patient population. The patients who underwent ≥ 3 cardiac catheterization procedures revealed higher DNA injury in comparison to the patients who underwent ≤ 2 procedures, documented with the presence of higher level of MN frequency (6.4 ± 4.8 vs. 9.1 ± 4.3, p = 0.002) and elevated serum 8-OHdG levels (33.7 ± 3.8 ng/mL vs. 17.4 ± 1.9 ng/mL, p = 0.001). Besides, OGG1 Ser326Cys and APE1 Asn148Glu heterozygous and homozygous polymorphic types, which are related with DNA repair mechanisms, were significantly associated with MN frequency levels (p = 0.006 for heterozygous and p = 0.001 for homozygous with respect to OGG1 Ser326Cys, p = 0.007 for heterozygous and p = 0.001 for homozygous with respect to APE1 Asn148Glu). There was no significant difference in terms of PARP1 Val762Ala gene polymorphism between two groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019). Mortality from ischemic heart disease. Circulation Cardiovascular Quality and Outcomes, 12, e005375.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andreassi, M. G., Cioppa, A., Manfredi, S., Palmieri, C., Botto, N., & Picano, E. (2007). Acute chromosomal DNA damage in human lymphocytes after radiation exposure in invasive cardiovascular procedures. European Heart Journal, 28, 2195–2199.

    Article  PubMed  Google Scholar 

  3. Borrego-Soto, G., Ortiz-López, R., & Rojas-Martínez, A. (2015). Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genetics and Molecular Biology, 38, 420–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirshfeld, J. W., Jr., Ferrari, V. A., Bengel, F. M., Bergersen, L., Chambers, C. E., Einstein, A. J., Eisenberg, M. J., Fogel, M. A., Gerber, T. C., Haines, D. E., Laskey, W. K., Limacher, M. C., Nichols, K. J., Pryma, D. A., Raff, G. L., Rubin, G. D., Smith, D., Stillman, A. E., Thomas, S. A., … Wann, L. S. (2018). 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: A report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. Journal of the American College of Cardiology, 71, e283–e351.

    Article  PubMed  Google Scholar 

  5. Upton, A. C. (2003). The state of the art in the 1990’s: NCRP Report No. 136 on the scientific bases for linearity in the dose-response relationship for ionizing radiation. Health Physics, 85, 15–22.

    Article  CAS  PubMed  Google Scholar 

  6. Koutsoukis, A., Ntalianis, A., Repasos, E., Kastritis, E., Dimopoulos, M. A., & Paraskevaidis, I. (2018). Cardio-oncology: A focus on cardiotoxicity. European Cardiology, 13, 64–69.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luzhna, L., Kathiria, P., & Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Frontiers in Genetics, 4, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenech, M. (1998). Important variables that influence base-line micronucleus frequency in cytokinesis-blocked lymphocytes-a biomarker for DNA damage in human populations. Mutation Research, 404, 155–165.

    Article  CAS  PubMed  Google Scholar 

  9. Gao, Y., Wang, P., Wang, Z., Han, L., Li, J., Tian, C., Zhao, F., Wang, J., Zhao, F., Zhang, Q., & Lyu, Y. (2019). Serum 8-hydroxy-2′-deoxyguanosine level as a potential biomarker of oxidative DNA damage induced by ionizing radiation in human peripheral blood. Dose Response, 17, 1559325818820649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreassi, M. G., Foffa, I., Manfredi, S., Botto, N., Cioppa, A., & Picano, E. (2009). Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutation Research, 666, 57–63.

    Article  CAS  PubMed  Google Scholar 

  11. Cornetta, T., Festa, F., Testa, A., & Cozzi, R. (2006). DNA damage repair and genetic polymorphisms: Assessment of individual sensitivity and repair capacity. International Journal of Radiation Oncology Biology Physics, 66, 537–545.

    Article  CAS  PubMed  Google Scholar 

  12. Vodicka, P., Kumar, R., Stetina, R., Sanyal, S., Soucek, P., Haufroid, V., Dusinska, M., Kuricova, M., Zamecnikova, M., Musak, L., Buchancova, J., Norppa, H., Hirvonen, A., Vodickova, L., Naccarati, A., Matousu, Z., & Hemminki, K. (2004). Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis, 25, 757–763.

    Article  CAS  PubMed  Google Scholar 

  13. Angelini, S., Kumar, R., Carbone, F., Maffei, F., Forti, G. C., Violante, F. S., Lodi, V., Curti, S., Hemminki, K., & Hrelia, P. (2005). Micronuclei in humans induced by exposure to low level of ionizing radiation: Influence of polymorphisms in DNA repair genes. Mutation Research, 570, 105–117.

    Article  CAS  PubMed  Google Scholar 

  14. Elmaraezy, A., Ebraheem Morra, M., Tarek Mohammed, A., Al-Habaa, A., Elgebaly, A., Abdelmotaleb Ghazy, A., Khalil, A. M., Tien Huy, N., & Hirayama, K. (2017). Risk of cataract among interventional cardiologists and catheterization lab staff: A systematic review and meta-analysis. Catheterization and Cardiovascular Interventions, 90, 1–9.

    Article  PubMed  Google Scholar 

  15. Fenech, M. (2006). Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutation Research, 600, 58–66.

    Article  CAS  PubMed  Google Scholar 

  16. Vral, A., Fenech, M., & Thierens, H. (2011). The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis, 26, 11–17.

    Article  CAS  PubMed  Google Scholar 

  17. Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F., & Botta, A. (2007). Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutation Research, 629, 111–121.

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, S., Liu, A., Gurvitz, M., Guo, L., Therrien, J., Laprise, C., Kaufman, J. S., Abrahamowicz, M., & Marelli, A. J. (2018). Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation, 137, 1334–1345.

    Article  PubMed  Google Scholar 

  19. Cai, L., Welsh, J. S., & Pennington, C. W. (2018). Letter by Cai et al regarding article, “Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease.” Circulation, 138, 1377–1378.

    Article  PubMed  Google Scholar 

  20. Doss, M. (2018). Radiation dose from cardiac catheterization procedures in young patients may not contribute to increased cancer risk. European Journal of Epidemiology, 33, 425–426.

    Article  PubMed  Google Scholar 

  21. Qian, Q. Z., Cao, X. K., Shen, F. H., & Wang, Q. (2016). Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers. Radiation Protection Dosimetry, 168, 197–203.

    CAS  PubMed  Google Scholar 

  22. Pilger, A., & Rüdiger, H. W. (2006). 8-Hydroxy-2’-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. International Archives of Occupational and Environmental Health, 80, 1–15.

    Article  CAS  PubMed  Google Scholar 

  23. Peng, Q., Lu, Y., Lao, X., Chen, Z., Li, R., Sui, J., Qin, X., & Li, S. (2014). Association between OGG1 Ser326Cys and APEX1 Asp148Glu polymorphisms and breast cancer risk: A meta-analysis. Diagnostic Pathology, 9, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Milić, M., Rozgaj, R., Kašuba, V., Jazbec, A. M., Starčević, B., Lyzbicki, B., Ravegnini, G., Zenesini, C., Musti, M., Hrelia, P., & Angelini, S. (2015). Polymorphisms in DNA repair genes: Link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation. Arhiv za Higijenu Rada i Toksikologiju, 66, 109–120.

    Article  PubMed  Google Scholar 

Download references

Funding

The present work was supported by the Scientific Research Project Coordination Unit of Istanbul University-Cerrahpasa. Project No. 31436.

Author information

Authors and Affiliations

Authors

Contributions

MC and BK selected the point, wrote the main manuscript text, and sent the paper for the publication. MG, BB, and MB made the lymphocyte isolation and PCR anaylsis. ED, BK, and DR provided the data and checked the paper. All authors revised the final version of the manuscript and agreed to publish it.

Corresponding author

Correspondence to Murat Cimci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimci, M., Batar, B., Bostanci, M. et al. The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations. Cardiovasc Toxicol 23, 278–283 (2023). https://doi.org/10.1007/s12012-023-09801-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09801-w

Keywords

Navigation