Skip to main content
Log in

A New Revision of the Stellar Content and Physical Properties of the Young Open Cluster vdB 130 in the Region of the Stellar Association Cyg OB1 Based on Gaia DR3 Data

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Based on Gaia DR3 data, a new revision of the stellar content is performed within the \(20^{\prime}\)-radius field centered on the young open cluster vdB 130, which is a part of the Cyg OB1 stellar association. A total of 97 stars and 39 protostars of luminosity classes I/II/III are identified that have proper-motion based cluster membership probabilities \(P>0.98\). The total number of possible cluster members with membership probabilities \(P>0.50\) is equal to about 300, and the cluster age estimated by fitting theoretical isochrones does not exceed 10 Myr. The trigonometric-parallax based cluster distance is \(D\approx 1670\pm 60\) pc, and the cluster color excess, \(E(BP-RP)\approx 0\overset{\textrm{m}}{.}85\pm 0\overset{\textrm{m}}{.}02\) with evidence for strong differential extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. https://www.cosmos.esa.int/gaia

  2. https://archives.esac.esa.int/gaia

  3. Renormalized unit-weight errors.

REFERENCES

  1. V. A. Ambartsumian, Astron. Zh. 26, 3 (1949).

    ADS  Google Scholar 

  2. F. Anders, A. Khalatyan, A. B. A. Queiroz, et al., Astron. and Astrophys. 658, id. A91 (2022a).

  3. F. Anders, A. Khalatyan, A. B. A. Queiroz, et al., VizieR Online Data Catalog I/354 (2022b).

  4. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, et al., Astron. J. 156 (2), article id. 58 (2018).

  5. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, et al., Astron. J. 161 (3), id. 147 (2021a).

  6. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, et al., VizieR Online Data Catalog I/352 (2021b).

  7. E. Bica, D. B. Pavani, C. J. Bonatto, and E. F. Lima, Astron. J. 157 (1), article id. 12 (2019a).

  8. E. Bica, D. B. Pavani, C. J. Bonatto, and E. F. Lima, VizieR Online Data Catalog J/AJ/157/12 (2019b).

  9. C. Blaha and R. M. Humphreys, Astron. J. 98, 1598 (1989).

    Article  ADS  Google Scholar 

  10. A. Bressan, P. Marigo, L. Girardi, et al., Monthly Notices Royal Astron. Soc. 427 (1), 127 (2012).

    Article  ADS  Google Scholar 

  11. A. G. A. Brown et al. (Gaia Collab.), Astron. and Astrophys. 650, id. C3 (2021).

  12. K. C. Chambers et al., VizieR Online Data Catalog II/349 (2017).

  13. K. C. Chambers, E. A. Magnier, N. Metcalfe, et al., arXiv e-prints astro-ph/1612.05560 (2016).

  14. A. A. Chemel, R. de Grijs, E. V. Glushkova, and A. K. Dambis, Monthly Notices Royal Astron. Soc. 515 (3), 4359 (2022).

    Article  ADS  Google Scholar 

  15. C. D. Garmany, ASP Conf. Ser. 13, 23 (1991).

  16. C. D. Garmany, Publ. Astron. Soc. Pacific 106, 25 (1994).

    Article  ADS  Google Scholar 

  17. C. D. Garmany, ASP Conf. Ser. 120, 363 (1997).

  18. C. D. Garmany and R. E. Stencel, Astron. and Astrophys. Suppl. 94, 211 (1992).

    ADS  Google Scholar 

  19. S. P. Goodwin, A. P. Whitworth, and D. Ward-Thompson, Astron. and Astrophys. 423, 169 (2004).

    Article  ADS  Google Scholar 

  20. Y. Guo, J. Li, J. Xiong, et al., Research Astron. Astrophys. 22 (2), 025009 (2022).

  21. P. Kroupa, Monthly Notices Royal Astron. Soc. 322 (2), 231 (2001).

    Article  ADS  Google Scholar 

  22. P. Kroupa, C. A. Tout, and G. Gilmore, Monthly Notices Royal Astron. Soc. 262, 545 (1993).

    Article  ADS  Google Scholar 

  23. M. A. Kuhn, R. S. de Souza, A. Krone-Martins, et al., Astrophys. J. Suppl. 254 (2), 33 (2021a).

    Article  ADS  Google Scholar 

  24. M. A. Kuhn, R. S. de Souza, A. Krone-Martins, et al., VizieR Online Data Catalog J/ApJS/254/33 (2021b).

  25. L. Lindegren, U. Bastian, M. Biermann, et al., Astron. and Astrophys. 649, A4 (2021).

    Article  Google Scholar 

  26. L. Liu and X. Pang, Astrophys. J. Suppl. 245 (2), 32 (2019).

    Article  ADS  Google Scholar 

  27. K. L. Luhman, E. E. Mamajek, P. R. Allen, and K. L. Cruz, Astrophys. J. 703 (1), 399 (2009).

    Article  ADS  Google Scholar 

  28. G. Marton, L. V. Tуth, R. Paladini, et al., Monthly Notices Royal Astron. Soc. 458 (4), 3479 (2016a).

    Article  ADS  Google Scholar 

  29. G. Marton, L. V. Toth, R. Paladini, et al., VizieR Online Data Catalog J/MNRAS/458/3479 (2016b).

  30. L. McInnes, J. Healy, and S. Astels, J. Open Source Software 2 (11), 205 (2017).

    Article  ADS  Google Scholar 

  31. A. M. Melnik and A. K. Dambis, Monthly Notices Royal Astron. Soc. 493 (2), 2339 (2020).

    Article  ADS  Google Scholar 

  32. A. M. Melnik and Y. N. Efremov, Astronomy Letters 21 (1), 10 (1995).

    ADS  Google Scholar 

  33. T. Preibisch, Research Astron. Astrophys.12 (1), 1 (2012).

    Article  ADS  Google Scholar 

  34. T. Prusti et al. (Gaia Collab.), Astron. and Astrophys. 595, id. A1 (2016).

  35. A. B. A. Queiroz, F. Anders, C. Chiappini, et al., Astron. and Astrophys. 638, id. A76 (2020).

  36. A. L. Quintana and N. J. Wright, Monthly Notices Royal Astron. Soc. 508 (2), 2370 (2021).

    Article  ADS  Google Scholar 

  37. A. L. Quintana and N. J. Wright, Monthly Notices Royal Astron. Soc. 511 (1), 1224 (2022).

    Article  ADS  Google Scholar 

  38. R. Racine, Astron. J. 73, 233 (1968).

    Article  ADS  Google Scholar 

  39. R. Racine, Astron. J. 79, 945 (1974).

    Article  ADS  Google Scholar 

  40. I. N. Reid, J. E. Gizis, and S. L. Hawley, Astron. J. 124 (5), 2721 (2002).

    Article  ADS  Google Scholar 

  41. J. Ruprecht, B. Balazs, and R. E. White, VizieR Online Data Catalog VII/31B (1998).

  42. J. Ruprecht, B. A. Balazs, and R. E. White, Catalogue of Star Clusters and Associations. Supplement 1 (Akadйmiai Kiadу, Budapest, 1981).

  43. N. Schneider, R. Simon, S. Bontemps, et al., Astron. and Astrophys. 474 (3), 873 (2007).

    Article  ADS  Google Scholar 

  44. T. G. Sitnik, O. V. Egorov, T. A. Lozinskaya, et al., Monthly Notices Royal Astron. Soc. 454 (3), 2486 (2015).

    Article  ADS  Google Scholar 

  45. T. G. Sitnik, O. V. Egorov, T. A. Lozinskaya, et al., Monthly Notices Royal Astron. Soc. 486 (2), 2449 (2019).

    Article  ADS  Google Scholar 

  46. T. G. Sitnik, A. S. Rastorguev, A. A. Tatarnikova, et al., Monthly Notices Royal Astron. Soc. 498 (4), 5437 (2020).

    Article  ADS  Google Scholar 

  47. A. A. Tatarnikova, A. M. Tatarnikov, T. G. Sitnik, and O. V. Egorov, Astronomy Letters 42 (12), 790 (2016).

    Article  ADS  Google Scholar 

  48. S. van den Bergh, Astron. J. 71, 990 (1966).

    Article  ADS  Google Scholar 

  49. E. Vasiliev, Monthly Notices Royal Astron. Soc. 484 (2), 2832 (2019).

    Article  ADS  Google Scholar 

  50. A. Vallenari et al. (Gaia Collab.), arXiv e-prints astro-ph/2208.00211 (2022).

  51. S. Wang and X. Chen, Astrophys. J. 877 (2), article id.  116 (2019).

  52. N. J. Wright, New Astronomy Rev. 90, article id. 101549 (2020).

  53. N. J. Wright, S. Goodwin, R. D. Jeffries, et al., arXiv e-prints astro-ph/2203.10007 (2022).

  54. M. Xiang, Y.-S. Ting, H.-W. Rix, et al., Astrophys. J. Suppl. 245 (2), article id. 34 (2019).

  55. B. Zhang, C. Liu, and L.-C. Deng, Astrophys. J. Suppl. 246 (1), article id. 9 (2020).

Download references

ACKNOWLEDGMENTS

This research made use of the equipment acquired within the framework of the M.V. Lomonosov Moscow State University Development Program. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This work is based in part on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (California Institute of Technology), and NEOWISE, which is a project of the Jet Propulsion Laboratory (California Institute of Technology). WISE and NEOWISE are funded by the National Aeronautics and Space Administration. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan- STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard–Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Spa- ce Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation.

Funding

This research was supported by the Russian Foundation for Basic Research (grants No. 18-02-00976, 18-02-00890, 19-02-00611, and 20-02-00643) and the M. V. Lomonosov Moscow State University Program ‘‘Leading scientific schools’’ (the project ‘‘Physics of stars, relativistic objects and galaxies’’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rastorguev.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by Dambis

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastorguev, A.S., Zabolotskikh, M.V., Sitnik, T.G. et al. A New Revision of the Stellar Content and Physical Properties of the Young Open Cluster vdB 130 in the Region of the Stellar Association Cyg OB1 Based on Gaia DR3 Data. Astrophys. Bull. 78, 119–133 (2023). https://doi.org/10.1134/S1990341323020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323020050

Keywords:

Navigation