Skip to main content
Log in

Approximate Calculation of the Thermal Loss of the Atmosphere of a Hot Exoplanet in a Low Orbit with Taking into Account the Ellipticity

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The paper presents the results of calculations using an approximate approach to estimating the thermal loss of the atmosphere of a hot exoplanet. The objective of simulation was to study a system of a yellow dwarf of the spectral type G with an exoplanet like a hot sub-Neptune or super-Earth. Estimates of the atmospheric loss rate for a hot sub-Neptune in weakly and strongly elliptical orbits are obtained. Calculations have shown that the atmospheric loss \(\dot{M}_{T}\) averaged over the orbital period of the model hot sub-Neptune varies from \(5.8\times 10^{17}\) g for an orbit with \(e=0.0\) to \(2.6\times 10^{18}\) g for an orbit with \(e=0.8\), that is, it increases by almost 4.5 times. Moreover, for \(e=0.2,0.4,\) and \(0.6\) the values of \(\dot{M}_{T}\) are equal to \(6.3\times 10^{17}\) g, \(7.6\times 10^{17}\) g, and \(1.2\times 10^{18}\) g respectively. Using the average atmospheric mass loss per orbit, we can approximately estimate the time of total atmospheric escape of the considered sub-Neptune—at \(e=0.0\), this time is approximately equal to 0.32 billion years, and at \(e=0.8\)—approximately 0.07 billion years. Accordingly, we can conclude that the initial ellipticity of the hot exoplanet’s orbit is an important factor in estimating the loss rate of the primary hydrogen-helium atmosphere for sub-Neptunes and super-Earths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. A. A. Avtaeva and V. I. Shematovich, Solar System Research 55 (2), 150 (2021).

    Article  ADS  Google Scholar 

  2. A. A. Avtaeva and V. I. Shematovich, Solar System Research 55 (2), 150 (2021).

    Article  ADS  Google Scholar 

  3. A. A. Avtaeva and V. I. Shematovich, Solar System Research 56 (2), 67 (2022).

    Article  ADS  Google Scholar 

  4. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Physics Uspekhi 64 (8), 747 (2021).

    Article  ADS  Google Scholar 

  5. R. P. Butler, J. T. Wright, G. W. Marcy, et al., Astrophys. J. 646 (1), 505 (2006).

    Article  ADS  Google Scholar 

  6. N. V. Erkaev, Y. N. Kulikov, H. Lammer, et al., Astron. and Astrophys. 472 (1), 329 (2007).

  7. N. Fujita, Y. Hori, and T. Sasaki, Astrophys. J. 928 (2), id. 105 (2022).

    Article  ADS  Google Scholar 

  8. B. Jackson, E. Jensen, S. Peacock, et al., Celestial Mechanics and Dynamical Astronomy 126 (1–3), 227 (2016).

    Article  ADS  Google Scholar 

  9. P. V. Kaygorodov and D. V. Bisikalo, Astronomy Reports 66 (11), 1017 (2022).

  10. D. Kubyshkina, L. Fossati, N. V. Erkaev, et al., Astrophys. J. 866 (2), article id. L18 (2018).

    Article  ADS  Google Scholar 

  11. D. Kubyshkina, A. A. Vidotto, L. Fossati, and E. Farrell, Monthly Notices Royal Astron. Soc. 499 (1), 77 (2020).

    Article  ADS  Google Scholar 

  12. H. Lammer, F. Selsis, I. Ribas, et al., Astrophys. J. 598 (2), L121 (2003).

    Article  ADS  Google Scholar 

  13. R. Luger, R. Barnes, E. Lopez, et al., Astrobiology 15 (1), 57 (2015).

    Article  ADS  Google Scholar 

  14. J. E. Owen, Annual Rev. Earth and Planetary Sci. 47, 67 (2019).

    Article  ADS  Google Scholar 

  15. V. I. Shematovich, Solar System Research 44 (2), 96 (2010).

  16. V. I. Shematovich, D. E. Ionov, and H. Lammer, Astron. and Astrophys. 571, id. A94 (2014).

    Article  ADS  Google Scholar 

  17. V. I. Shematovich and M. Y. Marov, Physics Uspekhi 61 (3), 217 (2018).

    Article  ADS  Google Scholar 

  18. L. Sproß, M. Scherf, V. I. Shematovich, et al., Astronomy Reports 65 (4), 275 (2021).

  19. V. Van Eylen, S. Albrecht, X. Huang, et al., Astron. J. 157 (2), article id. 61 (2019).

    Article  ADS  Google Scholar 

  20. J.-W. Xie, S. Dong, Z. Zhu, et al., Proc. National Academy Sci. 113 (41), 11431 (2016).

Download references

Funding

This work was supported by the Russian Science Foundation (project No. 22-22-00909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Simonova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonova, A.A., Shematovich, V.I. Approximate Calculation of the Thermal Loss of the Atmosphere of a Hot Exoplanet in a Low Orbit with Taking into Account the Ellipticity. Astrophys. Bull. 78, 217–224 (2023). https://doi.org/10.1134/S1990341323020098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323020098

Keywords:

Navigation