Skip to main content
Log in

Study of the Microquasar Cygnus X-3 with the RATAN-600 Radio Telescope in Multi-Azimuth Observing Mode

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We have been carrying out daily observations of bright microquasars at 1.2–20 GHz with the Northern sector of the RATAN-600 radio telescope for more than ten years. During the 2019–2021 observations we detected bright flares, which we call giant flares because fluxes reach record levels—above 20 Jy—during these events. In this paper we report the results of intraday variations of the microquasar Cygnus X-3 in multi-azimuth observations made with the ‘‘Southern sector with a flat-sheet reflector’’ during giant flares of Cygnus X-3. These were the first such observations made simultaneously at several frequencies on a short time scale (10 minutes). Observational data consists of 31 measurement made within \(\pm\)2.7 hours of the culmination of the object. We are the first to discover the evolution of the spectrum of the flare emission of Cygnus X-3 on a time scale comparable to the orbital period of the binary. The measurement data allowed us to determine the temporal and spectral parameters of radio emission, which are typical for synchrotron flare emission in relativistic jets. Evolution of the radio emission of X-ray binaries on short time scales is a key to understanding the formation of jet outbursts in the process of mass accretion of the matter of the donor star onto the relativistic object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/source/Cygnus_X-3

  2. https://swift.gsfc.nasa.gov/results/transients/CygX-3/

REFERENCES

  1. K. D. Aliakberov, M. G. Mingaliev, M. N. Naugol’naya, et al., Bull. Spec. Astrophys. Obs. 19, 59 (1985).

    ADS  Google Scholar 

  2. Y. Bhargava, A. R. Rao, K. P. Singh, et al., Astrophys. J. 849 (2), article id. 141 (2017).

  3. S. Corbel, G. Dubus, J. A. Tomsick, et al., Monthly Notices Royal Astron. Soc. 421 (4), 2947 (2012).

    Article  ADS  Google Scholar 

  4. R. Fender and J. Bright, Monthly Notices Royal Astron. Soc. 489 (4), 4836 (2019).

    ADS  Google Scholar 

  5. R. Giacconi, P. Gorenstein, H. Gursky, and J. R. Waters, Astrophys. J. 148, L119 (1967).

    Article  ADS  Google Scholar 

  6. D. A. Green and P. Elwood, Research Notes Amer. Astron. Soc. 4 (3), id. 36 (2020).

  7. P. C. Gregory, P. P. Kronberg, E. R. Seaquist, et al., Nature 239 (5373), 440 (1972).

    Article  ADS  Google Scholar 

  8. K. I. I. Koljonen, D. C. Hannikainen, M. L. McCollough, et al., Monthly Notices Royal Astron. Soc. 406 (1), 307 (2010).

    Article  ADS  Google Scholar 

  9. A. N. Korzhavin, V. N. L’vov, S. K. Tokhchukova, and S. D. Tsekmeister, Astrophysical Bulletin 67 (2), 225 (2012).

    Article  ADS  Google Scholar 

  10. J. Marti, J. M. Paredes, and R. Estalella, Astron. and Astrophys. 258, 309 (1992).

    ADS  Google Scholar 

  11. M. L. McCollough, C. R. Robinson, S. N. Zhang, et al., Astrophys. J. 517 (2), 951 (1999).

    Article  ADS  Google Scholar 

  12. J. C. A. Miller-Jones, K. M. Blundell, M. P. Rupen, et al., Astrophys. J. 600 (1), 368 (2004).

    Article  ADS  Google Scholar 

  13. M. Ott, A. Witzel, A. Quirrenbach, et al., Astron. and Astrophys. 284, 331 (1994).

    ADS  Google Scholar 

  14. R. E. Spencer, ASP Conf. Ser. 144, 337 (1998).

  15. R. E. Spencer, M. Garrett, J. D. Bray, and D. A. Green, Monthly Notices Royal Astron. Soc. 512 (2), 2618 (2022).

    Article  ADS  Google Scholar 

  16. M. Tavani, A. Bulgarelli, G. Piano, et al., Nature 462 (7273), 620 (2009).

    Article  ADS  Google Scholar 

  17. S. Trushkin, M. McCollough, N. Nizhelskij, and P. Tsybulev, Galaxies 5 (4), 86 (2017).

    Article  ADS  Google Scholar 

  18. S. Trushkin, A. Shevchenko, N. Bursov, et al., in Proc. All-Russian Conf. on Ground-Based Astronomy in Russia. 21st Century, Nizhny Arkhyz, Russia, 2020, Ed. by I. I. Romanyuk, I. A. Yakunin, A. F. Valeev, and D. O. Kudryavtsev (Spec. Astrophys. Obs. Russian Acad. Sci., Nizhnij Arkhyz, 2020), pp. 351–354.

  19. S. A. Trushkin, N. A. Nizhelskij, P. G. Tsybulev, and A. V. Shevchenko, Astronomer’s Telegram 12510, 1 (2019).

    ADS  Google Scholar 

  20. P. G. Tsybulev, N. A. Nizhelskii, M. V. Dugin, et al., Astrophysical Bulletin 73 (4), 494 (2018).

    Article  ADS  Google Scholar 

  21. V. Tudose, R. P. Fender, M. A. Garrett, et al., Monthly Notices Royal Astron. Soc. 375 (1), L11 (2007).

    Article  ADS  Google Scholar 

  22. H. van der Laan, Nature 211 (5054), 1131 (1966).

    Article  ADS  Google Scholar 

  23. M. H. van Kerkwijk, P. A. Charles, T. R. Geballe, et al., Nature 355 (6362), 703 (1992).

    Article  ADS  Google Scholar 

  24. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).

  25. E. B. Waltman, R. L. Fiedler, K. J. Johnston, and F. D. Ghigo, Astron. J. 108, 179 (1994).

    Article  ADS  Google Scholar 

  26. E. B. Waltman, R. S. Foster, G. G. Pooley, et al., Astron. J. 112, 2690 (1996).

    Article  ADS  Google Scholar 

  27. A. A Zdziarski, D. Malyshev, G. Dubus, et al., Monthly Notices Royal Astron. Soc. 479 (4), 4399 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Observations were performed with the equipment of RATAN-600 radio telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and supported by the Ministry of Science and Higher Education of the Russian Federation. We are sincerely grateful to the two reviewers for their constructive comments that helped to improve the paper.

Funding

Part of the observational data was exposured on the unique scientific facility the radio telescope RATAN-600 SAO RAS and the data processing was supported under the Ministry of Science and Higher Education of the Russian Federation grant No. 075-15-2022-262 (13.MNPMU.21.0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Trushkin.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Dambis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushkin, S.A., Shevchenko, A.V., Bursov, N.N. et al. Study of the Microquasar Cygnus X-3 with the RATAN-600 Radio Telescope in Multi-Azimuth Observing Mode. Astrophys. Bull. 78, 225–233 (2023). https://doi.org/10.1134/S1990341323020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323020116

Keywords:

Navigation