Skip to main content
Log in

Microchannel Surface Structures for Drag Reduction

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

There are many different designs of microchannels for fluid transport or heat transfer purposes. The most challenging problem is selecting the shape and boundary structure of the microchannel walls so that they meet all the requirements and be most optimal and efficient at high flow rates. Various studies show that applying superhydrophobic surface to the microchannel walls can significantly reduce drag forces; however, the characteristics of the best surface structure for a superhydrophobic boundary condition are still unknown. To clarify this problem, we have reviewed different possible engineering solutions for surface structure options, their effect on reducing microchannel drag, and compared them in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Roure, O. du, Lindner, A., Nazockdast, E.N., and Shelley, M.J., Dynamics of Flexible Fibers in Viscous Flows and Fluids, 2019, DOI:10.1146/annurev-fluid-122316-045153.

  2. Kavokine, N., Netz, R.R., and Bocquet, L., Fluids at the Nanoscale: from Continuum to Sub-Continuum Transport, 2020, DOI:10.1146/annurev-fluid-071320-095958.

  3. Singh, J., Montesinos-Castellanos, A., and Nigam, K.D.P., Process Intensification for Compact and Micro Heat Exchangers through Innovative Technologies: A Review, Ind. Engin. Chem. Res., 2019, vol. 58, no. 31, pp. 13819–13847; DOI:10.1021/acs.iecr.9b02082.

    Article  Google Scholar 

  4. Convery, N. and Gadegaard, N., 30 Years of Microfluidics, Micro Nano Engin., 2019, vol. 2, pp. 76–91; DOI:10.1016/j.mne.2019.01.003.

    Article  Google Scholar 

  5. Steinke, M.E. and Kandlikar, S.G., Single-Phase Liquid Friction Factors in Microchannels, Int. J. Thermal Sci., 2006, vol. 45, no. 11, pp. 1073–1083; DOI:10.1016/j.ijthermalsci.2006.01.016.

    Article  Google Scholar 

  6. Tuckerman, D.B. and Pease, R.F.W., High-Performance Heat Sinking for VLSI, 1981.

  7. Mo, J., Ding, Y., Xiang, N., Zhu, S., Zeng, J., Bi, K., et al., Fluid Release Pressure for Micro-/Nanoscale Rectangular Channels, J. Appl. Phys., 2020, vol. 127, no. 11, DOI:10.1063/1.5129411.

    Article  ADS  Google Scholar 

  8. Kandlikar, S.G., Microchannels and Minchannels-History, Terminology, Classification and Current Research Needs, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2003, vol. 36673, pp. 1–6.

  9. Bocquet, L. and Lauga, E., A Smooth Future?, Nature Mater., 2011, vol. 10, no. 5, pp. 334–337; DOI:10.1038/nmat2994.

    Article  ADS  Google Scholar 

  10. Kumar, V., Paraschivoiu, M., and Nigam, K.D.P., Single-Phase Fluid Flow and Mixing in Microchannels, Chem. Engin. Sci., 2011, vol. 66, no. 7, pp. 1329–1373; DOI:10.1016/j.ces.2010.08.016.

    Article  ADS  Google Scholar 

  11. Stone, H.A., Stroock, A.D., and Ajdari, A., Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip, Annual Review of Fluid Mechanics, 2004, vol. 36, pp. 381–411; DOI:10.1146/ annurev.fluid.36.050802.122124.

    Article  ADS  MATH  Google Scholar 

  12. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., et al., Microfluidic Diagnostic Technologies for Global Public Health, Nature, 2006, vol. 442, no. 7101, pp. 412–418; DOI:10.1038/nature05064.

    Article  ADS  Google Scholar 

  13. Hussien, A.A., Abdullah, M.Z., and Al-Nimr, M.A., Single-Phase Heat Transfer Enhancement in Micro/Minichannels Using Nanofluids: Theory and Applications, Appl. Energy, 2016, vol. 164, pp. 733–755; DOI:10.1016/j.apenergy.2015.11.099.

    Article  Google Scholar 

  14. Lu, S. and Vafai, K., A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling, Int. Commun. Heat Mass Transfer, 2016, vol. 76, pp. 271–284; DOI:10.1016/ j.icheatmasstransfer.2016.04.024.

    Article  Google Scholar 

  15. Ghahremannezhad, A. and Vafai, K., Thermal and Hydraulic Performance Enhancement of Microchannel Heat Sinks Utilizing Porous Substrates, Int. J. Heat Mass Transfer, 2018, vol. 122, pp. 1313–1326; DOI:10.1016/j.ijheatmasstransfer.2018.02.024.

    Article  Google Scholar 

  16. Heydari, A., Akbari, O.A., Safaei, M.R., Derakhshani, M., Alrashed, A.A.A.A., Mashayekhi, R., et al., The Effect of Attack Angle of Triangular Ribs on Heat Transfer of Nanofluids in a Microchannel, J. Thermal An. Calorimetry, 2018, vol. 131, no. 3, pp. 2893–2912; DOI:10.1007/s10973-017-6746-x.

    Article  Google Scholar 

  17. Kandlikar, S.G., Colin, S., Peles, Y., Garimella, S., Pease, R.F., Brandner, J.J., et al., Heat Transfer in Microchannels—2012 Status and Research Needs, J. Heat Transfer, 2013, vol. 135, no. 9, DOI:10.1115/ 1.4024354.

  18. Leng, C., Wang, X.D., Wang, T.H., and Yan, W.M., Multi-Parameter Optimization of Flow and Heat Transfer for a Novel Double-Layered Microchannel Heat Sink, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 359–369; DOI:10.1016/j.ijheatmasstransfer.2015.01.040.

    Article  Google Scholar 

  19. Wei, X., Joshi, Y., and Patterson, M.K., Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices, J. Heat Transfer, 2007, vol. 129, no. 10, pp. 1432–1444; DOI:10.1115/1.2754781.

    Article  Google Scholar 

  20. Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 1291–1303; DOI:10.1016/j.ijheatmasstransfer.2017.10.063.

    Article  Google Scholar 

  21. Fedorov, A.G. and Viskanta, R., Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 3, pp. 399–415.

    Article  MATH  Google Scholar 

  22. Gilmore, N., Timchenko, V., and Menictas, C., Microchannel Cooling of Concentrator Photovoltaics: A Review, Renew. Sustain. Energy Rev., 2018, vol. 90, pp. 1041–1059; DOI:10.1016/j.rser.2018.04.010.

    Article  Google Scholar 

  23. Hossain, M.Z. and Floryan, J.M., On the Role of Surface Grooves in the Reduction of Pressure Losses in Heated Channels, Phys Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0018416.

    Article  ADS  Google Scholar 

  24. Kandlikar, S.G., Joshi, S., and Tian, S., Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes, Heat Transfer Engin., 2003, vol. 24, no. 3, pp. 4–16; DOI:10.1080/01457630304069.

    Article  ADS  Google Scholar 

  25. Li, Z., He, Y.L., Tang, G.H., and Tao, W.Q., Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes, Int. J. Heat Mass Transfer, 2007, vol. 50, no. 17–18, pp. 3447–3460; DOI:10.1016/j.ijheatmasstransfer.2007.01.016.

    Article  MATH  Google Scholar 

  26. Thiangtham, P., Mondal, P.K., and Wongwises, S., Flow Boiling Pressure Drop Characteristics in a Multi-Microchannel Heat Sink, Phys. Fluids, 2021, vol. 33, no. 1, DOI:10.1063/5.0036615.

    Article  ADS  Google Scholar 

  27. Ellinas, K., Dimitrakellis, P., Sarkiris, P., and Gogolides, E., A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals, Processes, 2021, vol. 9, no. 4, DOI:10.3390/pr9040666.

    Article  Google Scholar 

  28. Akbari, O.A., Safaei, M.R., Goodarzi, M., Akbar, N.S., Zarringhalam, M., Shabani, G.A.S., et al., A Modified Two-Phase Mixture Model of Nanofluid Flow and Heat Transfer in a 3-D Curved Microtube, Adv. Powder Technol., 2016, vol. 27, no. 5, pp. 2175–2185; DOI:10.1016/j.apt.2016.08.002.

    Article  Google Scholar 

  29. He, J., Ju, Y., Kulasinski, K., Zheng, L., and Lammers, L., Molecular Dynamics Simulation of Methane Transport in Confined Organic Nanopores with High Relative Roughness, J. Natural Gas Sci. Engin., 2019, vol. 62, pp. 202–213; DOI:10.1016/j.jngse.2018.12.010.

    Article  Google Scholar 

  30. Shadloo-Jahromi, A., Kharati-Koopaee, M., and Bavi, O., Friction Factor Calculation in Nanochannels Comprising Different Wall Hydrophobicities and Superhydrophobic Structures: Molecular Dynamic Simulations, Int. Commun. Heat Mass Transfer, 2020, vol. 117, DOI:10.1016/ j.icheatmasstransfer.2020.104763.

    Article  Google Scholar 

  31. Xie, J.F. and Cao, B.Y., Effect of Various Surface Conditions on Nanochannel Flows past Permeable Walls, Molec. Simul., 2017, vol. 43, no. 1, pp. 65–75; DOI:10.1080/08927022.2016.1233547.

    Article  Google Scholar 

  32. Xu, H.Y., Yu, H., Fan, J.C., Zhu, Y.B., Wang, F.C., and Wu, H.A., Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores, Energy Fuels, 2020, vol. 34, no. 4, pp. 4407–4420; DOI:10.1021/acs.energyfuels.0c00212.

    Article  Google Scholar 

  33. Zhang, C. and Chen, Y., Slip Behavior of Liquid Flow in Rough Nanochannels, Chem. Engin. Proc.: Proc. Intensif., 2014, vol. 85, pp. 203–208; DOI:10.1016/j.cep.2014.09.003.

    Article  Google Scholar 

  34. Malkin, A.Y. and Patlazhan, S.A., Wall Slip for Complex Liquids—Phenomenon and Its Causes, Adv. Colloid Interface Sci., 2018, vol. 257, pp. 42–57; DOI:10.1016/j.cis.2018.05.008.

    Article  Google Scholar 

  35. Rothstein, J.P., Slip on Superhydrophobic Surfaces, Ann. Review Fluid Mech., 2010, vol. 42, pp. 89–109; DOI:10.1146/annurev-fluid-121108-145558.

    Article  ADS  Google Scholar 

  36. Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., et al., Characterization of Superhydrophobic Surfaces for Drag Reduction in Turbulent Flow, J. Fluid Mech., 2018, vol. 845, pp. 560–580; DOI:10.1017/jfm.2018.210.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lauga, E., Brenner, M.P., and Stone, H.A., Microfluidics: The No-Slip Boundary Condition, Springer Handbooks, Springer, 2007, pp. 1219–1240.

  38. Gatapova, E.Y., Ajaev, V.S., and Kabov, O.A., On Drag Reduction in a Two-Phase Flow, JETP Lett., 2015, vol. 101, no. 3, pp. 160–163; DOI:10.1134/S0021364015030042.

    Article  ADS  Google Scholar 

  39. Wen, L., Weaver, J.C., and Lauder, G.V., Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function, J. Exp. Biol., 2014, vol. 217, no. 10, pp. 1656–1666; DOI:10.1242/jeb.097097.

    Article  Google Scholar 

  40. Lee, C., Choi, C.H., and Kim, C.J., Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review, Exp. Fluids, 2016, vol. 57, no. 12, DOI:10.1007/s00348-016-2264-z.

  41. Song, D., Daniello, R.J., and Rothstein, J.P., Drag Reduction Using Superhydrophobic Sanded Teflon Surfaces, Exp. Fluids, 2014, vol. 55, no. 8, DOI:10.1007/s00348-014-1783-8.

  42. Aljallis, E., Sarshar, M.A., Datla, R., Sikka, V., Jones, A., and Choi, C.H., Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow, Phys. Fluids, 2013, vol. 25, no. 2, DOI:10.1063/1.4791602.

    Article  ADS  Google Scholar 

  43. Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., et al., The Salvmia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention under Water, Adv. Mat., 2010, vol. 22, no. 21, pp. 2325–2328; DOI:10.1002/adma.200904411.

    Article  Google Scholar 

  44. Choi, C.H., Ulmanella, U., Kim, J., Ho, C.M., and Kim, C.J., Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2337669.

    Article  ADS  Google Scholar 

  45. Choi, C.H. and Kim, C.J., Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface, Phys. Rev. Lett., 2006, vol. 96, no. 6, DOI:10.1103/PhysRevLett.96.066001.

    Article  ADS  Google Scholar 

  46. Solomon, B.R., Khalil, K.S., and Varanasi, K.K., Drag Reduction Using Lubricant-Impregnated Surfaces in Viscous Laminar Flow, Langmuir, 2014, vol. 30, no. 36, pp. 10970–10976; DOI:10.1021/la5021143.

    Article  Google Scholar 

  47. Tian, Y., Su, B., and Jiang, L., Interfacial Material System Exhibiting Superwettability, Adv. Mat., 2014, vol. 26, no. 40, pp. 6872–6897; DOI:10.1002/adma.201400883.

    Article  Google Scholar 

  48. Voronov, R.S., Papavassiliou, D.V., and Lee, L.L., Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle, Industr. Engin. Chem. Res., 2008, vol. 47, no. 8, pp. 2455–2477; DOI:10.1021/ie0712941.

    Article  Google Scholar 

  49. Wang, S., Liu, K., Yao, X., and Jiang, L., Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 2015, vol. 115, no. 16, pp. 8230–8293; DOI:10.1021/cr400083y.

    Article  Google Scholar 

  50. Zhang, X., Shi, F., Niu, J., Jiang, Y., and Wang, Z., Superhydrophobic Surfaces: From Structural Control to Functional Application, J. Mat. Chem., 2008, vol. 18, no. 6, pp. 621–633; DOI:10.1039/b711226b.

    Article  Google Scholar 

  51. Zhang, Y.L., Xia, H., Kim, E., and Sun, H.B., Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties, Soft Matt., 2012, vol. 8, no. 44, pp. 11217–11231; DOI:10.1039/c2sm26517f.

    Article  ADS  Google Scholar 

  52. Azese, M.N., Measurement and Characterization of Slippage and Slip-Law Using a Rigorous Analysis in Dynamics of Oscillating Rheometer: Newtonian Fluid, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5016885.

    Article  ADS  Google Scholar 

  53. Belyaev, A.V. and Vinogradova, O.I., Effective Slip in Pressure-Driven Flow past Super-Hydrophobic Stripes, J. Fluid Mech., 2010, vol. 652, pp. 489–499; DOI:10.1017/S0022112010000741.

    Article  ADS  MATH  Google Scholar 

  54. Mei, C.C. and Guo, X.Y., Numerical Study of Laminar Boundary-Layer Flows over a Superhydrophobic Plate, Phys. Fluids, 2018, vol. 30, no. 7, DOI:10.1063/1.5039605.

    Article  ADS  Google Scholar 

  55. Picella, F., Robinet, J.C., and Cherubini, S., On the Influence of the Modelling of Superhydrophobic Surfaces on Laminar-Turbulent Transition, J. Fluid Mech., 2020, vol. 901, DOI:10.1017/jfm.2020.516.

  56. Picella, F., Robinet, J.C., and Cherubini, S., Laminar-Turbulent Transition in Channel Flow with Superhydrophobic Surfaces Modelled as a Partial Slip Wall, J. Fluid Mech., 2019, vol. 881, pp. 462–497; DOI:10.1017/jfm.2019.740.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Gatapova, E.Y., and Gatapova, K.B., Bubble Dynamics in Thin Liquid Films and Breakup at Drop Impact, Soft Matter, 2020, vol. 16, no. 46, pp. 10397–10404; DOI:10.1039/d0sm01882a.

    Article  ADS  Google Scholar 

  58. Liakopoulos, A., Sofos, F., and Karakasidis, T.E., Darcy–Weisbach Friction Factor at the Nanoscale: From Atomistic Calculations to Continuum Models, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982667.

    Article  ADS  Google Scholar 

  59. Bocquet, L. and Barrat, J.L., Flow Boundary Conditions from Nano-To Micro-Scales, Soft Matter, 2007, vol. 3, no. 6, pp. 685–693.

    Article  ADS  Google Scholar 

  60. Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., and Charlaix, E., Low-Friction Flows of Liquid at Nanopatterned Interfaces, Nature Mat., 2003, vol. 2, no. 4, pp. 237–240; DOI:10.1038/nmat857.

    Article  ADS  Google Scholar 

  61. Meyer, E.E., Rosenberg, K.J., and Israelachvili, J., Recent Progress in Understanding Hydrophobic Interactions, 2006.

  62. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., and Craig, V.S.J., Boundary Slip in Newtonian Liquids: A Review of Experimental Studies, Rep. Progress Phys., 2005, vol. 68, no. 12, pp. 2859–2897; DOI:10.1088/0034-4885/68/12/R05.

    Article  ADS  Google Scholar 

  63. Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L., Achieving Large Slip with Superhydrophobic Surfaces: Scaling Laws for Generic Geometries, Phys. Fluids, 2007, vol. 19, no. 12, DOI:10.1063/1.2815730.

    Article  ADS  MATH  Google Scholar 

  64. Stratakis, E., Bonse, J., Heitz, J., Siegel, J., Tsibidis, G.D., Skoulas, E., et al., Laser Engineering of Biomimetic Surfaces, Mat. Sci. Engin.: R: Reports 141, 2020, vol. 100562.

  65. Liravi, M., Pakzad, H., Moosavi, A., and Nouri-Borujerdi, A., A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction, Progr. Organic Coat., 2020, vol. 140, DOI:10.1016/j.porgcoat.2019.105537.

    Article  Google Scholar 

  66. Lin, Y.T., Ting, Y.S., Chen, B.Y., Cheng, Y.W., and Liu, T.Y., Bionic Shark Skin Replica and Zwitterionic Polymer Brushes Functionalized PDMS Membrane for Anti-Fouling and Wound Dressing Applications, Surf. Coat. Technol., 2020, vol. 391, DOI:10.1016/j.surfcoat.2020.125663.

    Article  Google Scholar 

  67. Liu, Z., Yin, W., Tao, D., and Tian, Y., A Glimpse of Superb Tribological Designs in Nature, Biotribology, 2015, vols. 1/2, pp. 11–23; DOI:10.1016/j.biotri.2015.02.002.

    Article  Google Scholar 

  68. Park, K.C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J.C., et al., Condensation on Slippery Asymmetric Bumps, Nature, 2016, vol. 531, no. 7592, pp. 78–82; DOI:10.1038/nature16956.

    Article  ADS  Google Scholar 

  69. Dou, S., Xu, H., Zhao, J., Zhang, K., Li, N., Lin, Y., et al., Bioinspired Microstructured Materials for Optical and Thermal Regulation, Adv.Mat., 2021, vol. 33, no. 6, DOI:10.1002/adma.202000697.

    Article  Google Scholar 

  70. Dean, B. and Bhushan, B., Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review, Philos. Trans. Royal Soc. A: Math., Phys. Engin. Sci., 2010, vol. 368, no. 1929, pp. 4775–4806; DOI:10.1098/rsta.2010.0201.

    Article  ADS  Google Scholar 

  71. Miyazaki, M., Hirai, Y., Moriya, H., Shimomura, M., Miyauchi, A., and Liu, H., Biomimetic Riblets Inspired by Sharkskin Denticles: Digitizing, Modeling and Flow Simulation, J. Bionic Engin., 2018, vol. 15, no. 6, pp. 999–1011; DOI:10.1007/s42235-018-0088-7.

    Article  Google Scholar 

  72. Luo, Y., Yuan, L., Li, J., and Wang, J., Boundary Layer Drag Reduction Research Hypotheses Derived from Bio-Inspired Surface and Recent Advanced Applications, Micron, 2015, vol. 79, pp. 59–73; DOI:10.1016/j.micron.2015.07.006.

    Article  Google Scholar 

  73. Lu, Y., Superior Lubrication Properties of Biomimetic Surfaces with Hierarchical Structure, Tribology Int., 2018, vol. 119, pp. 131–142; DOI:10.1016/j.triboint.2017.10.021.

    Article  ADS  Google Scholar 

  74. Bhushan, B., Biomimetics Inspired Surfaces for Drag Reduction and Oleophobicity/Philicity, Beilstein J. Nanotechn., 2011, vol. 2, no. 1, pp. 66–84; DOI:10.3762/bjnano.2.9.

    Article  ADS  Google Scholar 

  75. Darmanin, T. and Guittard, F., Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials, J. Mat. Chem. A, 2014, vol. 2, no. 39, pp. 16319–16359; DOI:10.1039/c4ta02071e.

    Article  Google Scholar 

  76. Falde, E.J., Yohe, S.T., Colson, Y.L., and Grinstaff, M.W., Superhydrophobic Materials for Biomedical Applications, Biomat., 2016, vol. 104, pp. 87–103; DOI:10.1016/j.biomaterials.2016.06.050.

    Article  Google Scholar 

  77. Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., and Zhu, D., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angewandte Chemie, 2003, vol. 115, no. 7, pp. 824–826.

    Article  ADS  Google Scholar 

  78. Joseph, P., Cottin-Bizonne, C., Benoı̂t, J.M., Ybert, C., Journet, C., Tabeling, P., et al., Slippage of Water past Superhydrophobic Carbon Nanotube Forests in Microchannels, Phys. Rev. Lett., 2006, vol. 97, no. 15, DOI:10.1103/PhysRevLett.97.156104.

    Article  ADS  Google Scholar 

  79. Krupenkin, T.N., Taylor, J.A., Schneider, T.M., and Yang, S., From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 2004, vol. 20, no. 10, pp. 3824–3827; DOI:10.1021/la036093q.

    Article  Google Scholar 

  80. Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., and Barthlott, W., The Dream of Staying Clean: Lotus and Biomimetic Surfaces. Bioinspiration Biomimetics, vol. 2, 2007, DOI:10.1088/1748-3182/2/4/S02.

    Article  ADS  Google Scholar 

  81. Tsai, P., Peters, A.M., Pirat, C., Wessling, M., Lammertink, R.G.H., and Lohse, D., Quantifying Effective Slip Length over Micropatterned Hydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 11, pp. 1–8; DOI:10.1063/1.3266505.

    Article  MATH  Google Scholar 

  82. Yan, Y.Y., Gao, N., and Barthlott, W., Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces, Adv. Colloid Interface Sci., 2011, vol. 169, no. 2, pp. 80–105; DOI:10.1016/j.cis.2011.08.005.

    Article  Google Scholar 

  83. Tian, G., Zhang, Y., Feng, X., and Hu, Y., Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges, Adv. Engin. Mat., 2022, vol. 24, no. 1, p. 2100696.

    Article  Google Scholar 

  84. Zhu, Y., Yang, F., and Guo, Z., Bioinspired Surfaces with Special Micro-Structures and Wettability for Drag Reduction: Which Surface Design will be a Better Choice?, Nanoscale, 2021, vol. 13, no. 6, pp. 3463–3482; DOI:10.1039/d0nr07664c.

    Article  Google Scholar 

  85. Asadi, M., Xie, G., and Sunden, B., A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 34–53; DOI:10.1016/ j.ijheatmasstransfer.2014.07.090.

    Article  Google Scholar 

  86. Bahrami, M., Yovanovich, M.M., and Culham, J.R., Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2005, vol. 41855, DOI:https://doi.org/10.1115/ICMM2005-75109

  87. Chamkha, A.J., Molana, M., Rahnama, A., and Ghadami, F., On the Nanofluids Applications in Microchannels: A Comprehensive Review, Powder Technol., 2018, vol. 332, pp. 287–322; DOI:10.1016/ j.powtec.2018.03.044.

    Article  Google Scholar 

  88. El-Genk, M.S. and Pourghasemi, M., Analytical and Numerical Investigations of Friction Number for Laminar Flow in Microchannels, J. Fluids Engin., Trans. ASME, 2019, vol. 141, no. 3, DOI:10.1115/ 1.4041112.

  89. Gluzdov, D.S. and Gatapova, E.Y., Friction Reduction by Inlet Temperature Variation in Microchannel Flow, Phys. Fluids, 2021, vol. 33, no. 6, DOI:10.1063/5.0051998.

    Article  ADS  Google Scholar 

  90. Kohl, M.J., Abdel-Khalik, S.I., Jeter, S.M., and Sadowski, D.L., An Experimental Investigation of Microchannel Flow with Internal Pressure Measurements, Int. J. Heat Mass Transfer, 2005, vol. 48, no. 8, pp. 1518–1533; DOI:10.1016/j.ijheatmasstransfer.2004.10.030.

    Article  Google Scholar 

  91. Nazridoust, K., Ahmadi, G., and Smith, D.H., A New Friction Factor Correlation for Laminar, Single-Phase Flows through Rock Fractures, J. Hydrol., 2006, vol. 329, nos. 1/2, pp. 315–328; DOI:10.1016/ j.jhydrol.2006.02.032.

    Article  ADS  Google Scholar 

  92. Salman, B.H., Mohammed, H.A., Munisamy, K.M., and Kherbeet, A.S., Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review, Renew. Sustain. Energy Rev., 2013, vol. 28, pp. 848–880; DOI:10.1016/j.rser.2013.08.012.

    Article  Google Scholar 

  93. Sharma, J.P., Sharma, A., Jilte, R.D., Kumar, R., and Ahmadi, M.H., A Study on Thermohydraulic Characteristics of Fluid Flow through Microchannels, J. Thermal An. Calorim., 2020, vol. 140, no. 1, DOI:10.1007/s10973-019-08741-4.

    Article  Google Scholar 

  94. Xu, Z., Song, S., Xin, F., and Lu, T.J., Mathematical Modeling of Stokes Flow in Petal Shaped Pipes, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5067291.

    Article  ADS  Google Scholar 

  95. Ichikawa, Y., Yamamoto, K., Yamamoto, M., and Motosuke, M., Near-Hydrophobic-Surface Flow Measurement by Micro-3D PTV for Evaluation of Drag Reduction, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5001345.

    Article  ADS  Google Scholar 

  96. Gupta, R., Fletcher, D.F., and Haynes, B.S., Taylor Flow in Microchannels: A Review of Experimental and Computational Work, J. Comput. Multiphase Flows 21, 2010, pp. 1–31.

  97. Ho, H.Q. and Asai, M., Experimental Study on the Stability of Laminar Flow in a Channel with Streamwise and Oblique Riblets, Phys Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5009039.

    Article  ADS  Google Scholar 

  98. Tao, R., Jin, Y., Gao, X., and Li, Z., Flow Characterization in Converging-Diverging Microchannels, Phys. Fluids, 2018, vol. 30, no. 11, DOI:10.1063/1.5048322.

    Article  ADS  Google Scholar 

  99. Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Application of Floquet Theory to the Stability of Liquid Films on Structured Surfaces, Phys. Fluids, 2013, vol. 25, no. 12, DOI:10.1063/1.4834376.

    Article  ADS  MATH  Google Scholar 

  100. Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Stability and Break-Up of Thin Liquid Films on Patterned and Structured Surfaces, Adv. Colloid Interface Sci., 2016, vol. 228, pp. 92–104; DOI:10.1016/ j.cis.2015.11.011.

    Article  Google Scholar 

  101. Asmolov, E.S., Belyaev, A.V., and Vinogradova, O.I., Drag Force on a Sphere Moving toward an Anisotropic Superhydrophobic Plane, Phys. Rev. E—Stat., Nonlin., Soft Matter Phys., 2011, vol. 84, no. 2, DOI:10.1103/PhysRevE.84.026330.

    Article  ADS  Google Scholar 

  102. Chen, H., Gao, Y., Stone, H.A., and Li, J., “Fluid Bearing” Effect of Enclosed Liquids in Grooves on Drag Reduction in Microchannels, Phys. Rev. Fluids, 2016, vol. 1, no. 8, DOI:10.1103/ PhysRevFluids.1.083904.

  103. Feuillebois, F., Bazant, M.Z., and Vinogradova, O.I., Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett., 2009, vol. 102, no. 2, DOI:10.1103/PhysRevLett.102.026001.

    Article  ADS  Google Scholar 

  104. Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., et al., An Energy-Efficient Pathway to Turbulent Drag Reduction, Nature Commun., 2021, vol. 12, no. 1, DOI:10.1038/s41467-021-26128-8.

  105. Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., and Sreenivasan, K.R., Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues, Phys. Fluids, 2010, vol. 22, no. 6, pp. 1–24; DOI:10.1063/1.3453711.

    Article  ADS  MATH  Google Scholar 

  106. Costantini, R., Mollicone, J.P., and Battista, F., Drag Reduction Induced by Superhydrophobic Surfaces in Turbulent Pipe Flow, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5011805.

    Article  ADS  Google Scholar 

  107. Daniello, R.J., Waterhouse, N.E., and Rothstein, J.P., Drag Reduction in Turbulent Flows over Superhydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 8, DOI:10.1063/1.3207885.

    Article  ADS  MATH  Google Scholar 

  108. Henoch, C., Krupenkin, T.N., Kolodner, P., Taylor, J.A., Hodes, M.S., Lyons, A.M., et al., Turbulent Drag Reduction Using Superhydrophobic Surfaces, 2006.

  109. Martell, M.B., Perot, J.B., and Rothstein, J.P., Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces, J. Fluid Mech., 2009, vol. 620, pp. 31–41; DOI:10.1017/S0022112008004916.

    Article  ADS  MATH  Google Scholar 

  110. Park, H., Park, H., and Kim, J., A Numerical Study of the Effects of Superhydrophobic Surface on Skin-Friction Drag in Turbulent Channel Flow, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4819144.

    Article  ADS  Google Scholar 

  111. Mehboudi, A. and Yeom, J., A One-Dimensional Model for Compressible Fluid Flows through Deformable Microchannels, Phys. Fluids, 2018, vol. 30, no. 9, DOI:10.1063/1.5043202.

    Article  ADS  Google Scholar 

  112. Tang, G.H., Li, Z., He, Y.L., and Tao, W.Q., Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 11/12, pp. 2282–2295; DOI:10.1016/j.ijheatmasstransfer.2006.10.034.

    Article  Google Scholar 

  113. Kim, T.J. and Hidrovo, C., Pressure and Partial Wetting Effects on Superhydrophobic Friction Reduction in Microchannel Flow, Phys. Fluids, 2012, vol. 24, no. 11, DOI:10.1063/1.4767469.

    Article  ADS  Google Scholar 

  114. Choi, C.H., Westin, K.J.A., and Breuer, K.S., Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels, Phys. Fluids, 2003, vol. 15, no. 10, pp. 2897–2902; DOI:10.1063/1.1605425.

    Article  ADS  MATH  Google Scholar 

  115. Haustein, H.D. and Kashi, B., Distortion of Pipe-Flow Development by Boundary Layer Growth and Unconstrained Inlet Conditions, Phys. Fluids, 2019, vol. 31, no. 6, DOI:10.1063/1.5091602.

    Article  ADS  Google Scholar 

  116. Lobo, O.J. and Chatterjee, D., Development of Flow in a Square Mini-Channel: Effect of Flow Oscillation, Phys. Fluids, 2018, vol. 30, no. 4, DOI:10.1063/1.5018160.

    Article  ADS  Google Scholar 

  117. Sun, Q., Choi, K.S., Zhao, Y., and Mao, X., Resistance of Velocity Slip Flow in Pipe/Channel with a Sudden Contraction, Phys. Fluids, 2020, vol. 32, no. 6, DOI:10.1063/5.0009415.

    Article  ADS  Google Scholar 

  118. Zhang, G., Huang, H., Sun, T., Li, N., Zhou, B., and Sun, Z., Analysis of the Performance of a New Developed Shear Stress Transport Model in a Turbulent Impinging Jet Flow, Phys. Fluids, 2019, vol. 31, no. 11, DOI:10.1063/1.5118675.

    Article  ADS  Google Scholar 

  119. Gaddam, A., Agrawal, A., Joshi, S.S., and Thompson, M.C., Slippage on a Particle-Laden Liquid-Gas Interface in Textured Microchannels, Phys. Fluids, 2018, vol. 30, no. 3, DOI:10.1063/1.5017011.

    Article  ADS  Google Scholar 

  120. Lu, Y., Liu, H., Liu, Z., and Yan, C., Investigation and Parameterization of Transition Shielding in Roughness-Disturbed Boundary Layer with Direct Numerical Simulations, Phys. Fluids, 2020, vol. 32, no. 7, DOI:10.1063/5.0012464.

    Article  ADS  Google Scholar 

  121. Vaquero, J., Renard, N., and Deck, S., Effects of Upstream Perturbations on the Solution of the Laminar and Fully Turbulent Boundary Layer Equations with Pressure Gradients, Phys. Fluids, 2019, vol. 31, no. 12, DOI:10.1063/1.5125496.

    Article  ADS  Google Scholar 

  122. Wollborn, T., Luhede, L., and Fritsching, U., Evaluating Interfacial Shear and Strain Stress during Droplet Deformation in Micro-Pores, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5064858.

    Article  ADS  Google Scholar 

  123. Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Mikheev, N., and Kähler, C.J., On a Mechanism of Near-Wall Reverse Flow Formation in a Turbulent Duct Flow, J. Fluid Mech., 2021, vol. 923, DOI:10.1017/jfm.2021.526.

  124. Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Markovich, D., and Kähler, C.J., Reverse Flow Phenomenon in Duct Corners at a Low Reynolds Number, Phys. Fluids, 2021, vol. 33, no. 8, DOI:10.1063/5.0055859.

    Article  ADS  Google Scholar 

  125. Karatay, E., Tsai, P.A., and Lammertink, R.G.H., Rate of Gas Absorption on a Slippery Bubble Mattress, Soft Matter., 2013, vol. 9, no. 46, pp. 11098–11106; DOI:10.1039/c3sm51928g.

    Article  ADS  Google Scholar 

  126. Ng, C.O. and Sun, R., Pressure Loss in Channel Flow Resulting from a Sudden Change in Boundary Condition from No-Slip to Partial-Slip, Phys. Fluids, 2017, vol. 29, no. 10, DOI:10.1063/1.4986268.

    Article  ADS  Google Scholar 

  127. Rasoulzadeh, M., Yekta, A., Deng, H., and Ghahfarokhi, R.B., Semi-Analytical Models of Mineral Dissolution in Rough Fractures with Permeable Walls, Phys. Fluids, 2020, vol. 32, no. 5, DOI:10.1063/5.0005878.

    Article  Google Scholar 

  128. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., et al., Microscopic Velocity Field Measurements Inside a Regular Porous Medium Adjacent to a Low Reynolds Number Channel Flow, Phys. Fluids, 2019, vol. 31, no. 4, DOI:10.1063/1.5092169.

    Article  ADS  Google Scholar 

  129. Ryu, J., Byeon, H., Lee, S.J., and Sung, H.J., Flapping Dynamics of a Flexible Plate with Navier Slip, Phys. Fluids, 2019, vol. 31, no. 9, DOI:10.1063/1.5109456.

    Article  ADS  Google Scholar 

  130. Sun, J., Wang, W., and Wang, H.S., Dependence of Nanoconfined Liquid Behavior on Boundary and Bulk Factors, Phys. Rev. E–Stat., Nonlin., Soft Matter Phys., 2013, vol. 87, no. 2, DOI:10.1103/ PhysRevE.87.023020.

    Article  ADS  Google Scholar 

  131. Wang, N., Xiong, D., Deng, Y., Shi, Y., and Wang, K., Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 11, pp. 6260–6272; DOI:10.1021/acsami.5b00558.

    Article  Google Scholar 

  132. Lee, C. and Kim, C.J., Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls, Langmuir, 2009, vol. 25, no. 21, pp. 12812–12818; DOI:10.1021/la901824d.

    Article  Google Scholar 

  133. Lee, C. and Kim, C.J., Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction, Phys. Rev. Lett., 2011, vol. 106, no. 1, DOI:10.1103/PhysRevLett.106.014502.

    Article  ADS  Google Scholar 

  134. Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al., Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity, Nature, 2011, vol. 477, no. 7365, pp. 443–447; DOI:10.1038/nature10447.

    Article  ADS  Google Scholar 

  135. Min, T. and Kim, J., Effects of Hydrophobic Surface on Skin-Friction Drag, Phys. Fluids, 2004, vol. 16, no. 7, DOI:10.1063/1.1755723.

    Article  ADS  MATH  Google Scholar 

  136. Fukagata, K., Kasagi, N., and Koumoutsakos, P., A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces, Phys. Fluids, 2006, vol. 18, no. 5, DOI:10.1063/1.2205307.

    Article  ADS  Google Scholar 

  137. Attalla, M., Maghrabie, H.M., and Specht, E., An Experimental Investigation on Fluid Flow and Heat Transfer of Rough Mini-Channel with Rectangular Cross Section, Exp. Thermal Fluid Sci., 2016, vol. 75, pp. 199–210; DOI:10.1016/j.expthermflusci.2016.01.019.

    Article  Google Scholar 

  138. Chang, J., Jung, T., Choi, H., and Kim, J., Predictions of the Effective Slip Length and Drag Reduction with a Lubricated Micro-Groove Surface in a Turbulent Channel Flow, J. Fluid Mech., 2019, vol. 874, pp. 797–820; DOI:10.1017/jfm.2019.468.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. Chuan, L., Wang, X.D., Wang, T.H., and Yan, W.M., Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept, Int. Comm. Heat Mass Transfer, 2015, vol. 65, pp. 52–57; DOI:10.1016/j.icheatmasstransfer.2015.04.005.

    Article  Google Scholar 

  140. Davies, J., Maynes, D., Webb, B.W., and Woolford, B., Laminar Flow in a Microchannel with Superhydrophobic Walls Exhibiting Transverse Ribs, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2336453.

    Article  ADS  Google Scholar 

  141. DeGroot, C.T., Wang, C., and Floryan, J.M., Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow, J. Fluids Engin., Trans. ASME, 2016, vol. 138, no. 12, DOI:10.1115/1.4034098.

  142. Dey, P., Saha, S.K., and Chakraborty, S., Microgroove Geometry Dictates Slippery Hydrodynamics on Superhydrophobic Substrates, Phys. Fluids, 2018, vol. 30, no. 12, DOI:10.1063/1.5063630.

    Article  ADS  Google Scholar 

  143. Gamrat, G., Favre-Marinet, M., le Person, S., Bavière, R., and Ayela, F., An Experimental Study and Modelling of Roughness Effects on Laminar Flow in Microchannels, J. Fluid Mech., 2008, vol. 594, pp. 399–423; DOI:10.1017/S0022112007009111.

    Article  ADS  MATH  Google Scholar 

  144. Gao, Y., Li, J., Shum, H.C., and Chen, H., Drag Reduction by Bubble-Covered Surfaces Found in PDMS Microchannel through Depressurization, Langmuir, 2016, vol. 32, no. 19, pp. 4815–4819; DOI:10.1021/ acs.langmuir.6b01186.

    Article  Google Scholar 

  145. Guo, L., Xu, H., and Gong, L., Influence of Wall Roughness Models on Fluid Flow and Heat Transfer in Microchannels, Appl. Thermal Engin., 2015, vol. 84, pp. 399–408; DOI:10.1016/ j.applthermaleng.2015.04.001.

    Article  Google Scholar 

  146. Hao, P.F., Wong, C., Yao, Z.H., and Zhu, K.Q., Laminar Drag Reduction in Hydrophobic Microchannels, Chem. Engin. Technol., 2009, vol. 32, no. 6, pp. 912–918; DOI:10.1002/ceat.200900001.

    Article  Google Scholar 

  147. Javaherchian, J. and Moosavi, A., Pressure Drop Reduction of Power-Law Fluids in Hydrophobic Microgrooved Channels, Phys. Fluids, 2019, vol. 31, no. 7, DOI:10.1063/1.5115820.

    Article  ADS  Google Scholar 

  148. Karatay, E., Haase, A.S., Visser, C.W., Sun, C., Lohse, D., Tsai, P.A., et al., Control of Slippage with Tunable Bubble Mattresses, Proc. of the National Academy of Sciences of the United States of America, 2013, vol. 110, no. 21, pp. 8422–8426; DOI:10.1073/pnas.1304403110.

    Article  ADS  Google Scholar 

  149. Kasiteropoulou, D., Karakasidis, T.E., and Liakopoulos, A., Mesoscopic Simulation of Fluid Flow in Periodically Grooved Microchannels, Comput. Fluids, 2013, vol. 74, pp. 91–101; DOI:10.1016/ j.compfluid.2013.01.010.

    Article  MATH  Google Scholar 

  150. Kunert, C. and Harting, J., Roughness Induced Boundary Slip in Microchannel Flows, Phys. Rev. Lett., 2007, vol. 99, no. 17, DOI:10.1103/PhysRevLett.99.176001.

    Article  ADS  Google Scholar 

  151. Lee, C., Choi, C.H., and Kim, C.J., Structured Surfaces for a Giant Liquid Slip, Phys. Rev. Lett., 2008, vol. 101, no. 6, DOI:10.1103/PhysRevLett.101.064501.

    Article  ADS  Google Scholar 

  152. Lee, Y.J., Singh, P.K., and Lee, P.S., Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins with Parametric Study, Int. J. Heat Mass Transfer, 2015, vol. 81, pp. 325–336; DOI:10.1016/j.ijheatmasstransfer.2014.10.018.

    Article  Google Scholar 

  153. Li, F., Ma, Q., Xin, G., Zhang, J., and Wang, X., Heat Transfer and Flow Characteristics of Microchannels with Solid and Porous Ribs, Appl. Thermal Engin., 2020, vol. 178, DOI:10.1016/ j.applthermaleng.2020.115639.

    Article  Google Scholar 

  154. Liu, Y., Gu, H., Jia, Y., Liu, J., Zhang, H., Wang, R., et al., Design and Preparation of Biomimetic Polydimethylsiloxane (PDMS) Films with Superhydrophobic, Self-Healing and Drag Reduction Properties via Replication of Shark Skin and SI-ATRP, Chem. Engin. J., 2019, vol. 356, pp. 318–328; DOI:10.1016/j.cej.2018.09.022.

    Article  Google Scholar 

  155. Taghvaei, E., Moosavi, A., Nouri-Borujerdi, A., Daeian, M.A., and Vafaeinejad, S., Superhydrophobic Surfaces with a Dual-Layer Micro- and Nanoparticle Coating for Drag Reduction, Energy, 2017, vol. 125, pp. 1–10; DOI:10.1016/j.energy.2017.02.117.

    Article  Google Scholar 

  156. Liu, Y., Li, J., and Smits, A.J., Roughness Effects in Laminar Channel Flow, J. Fluid Mech., 2019, vol. 876, pp. 1129–1145; DOI:10.1017/jfm.2019.603.

    Article  ADS  Google Scholar 

  157. Lu, G., Zhao, J., Lin, L., Wang, X.D., and Yan, W.M., A New Scheme for Reducing Pressure Drop and Thermal Resistance Simultaneously in Microchannel Heat Sinks with Wavy Porous Fins, Int. J. Heat Mass Transfer, 2017, vol. 111, pp. 1071–1078; DOI:10.1016/j.ijheatmasstransfer.2017.04.086.

    Article  Google Scholar 

  158. Lyu, S., Nguyen, D.C., Kim, D., Hwang, W., and Yoon, B., Experimental Drag Reduction Study of Super-Hydrophobic Surface with Dual-Scale Structures, Appl. Surface Sci., 2013, vol. 286, pp. 206–211; DOI:10.1016/j.apsusc.2013.09.048.

    Article  ADS  Google Scholar 

  159. Martin, S. and Bhushan, B., Modeling and Optimization of Shark-Inspired Riblet Geometries for Low Drag Applications, J. Colloid Interface Sci., 2016, vol. 474, pp. 206–215; DOI:10.1016/j.jcis.2016.04.019.

    Article  ADS  Google Scholar 

  160. Maynes, D., Jeffs, K., Woolford, B., and Webb, B.W., Laminar Flow in a Microchannel with Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction, Phys. Fluids, 2007, vol. 19, no. 9, DOI:10.1063/1.2772880.

    Article  ADS  MATH  Google Scholar 

  161. Mohammadi, A. and Floryan, J.M., Groove Optimization for Drag Reduction, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4826983.

    Article  ADS  Google Scholar 

  162. Ou, J. and Rothstein, J.P., Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces, Phys. Fluids, 2005, vol. 17, no. 10, DOI:10.1063/1.2109867.

    Article  ADS  MATH  Google Scholar 

  163. Ou, J., Perot, B., and Rothstein, J.P., Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces, Phys. Fluids, 2004, vol. 16, no. 12, pp. 4635–4643; DOI:10.1063/1.1812011.

    Article  ADS  MATH  Google Scholar 

  164. Qiu, H., Chauhan, K., and Lei, C., A Numerical Study of Drag Reduction Performance of Simplified Shell Surface Microstructures, Ocean Engin., 2020, vol. 217, DOI:10.1016/j.oceaneng.2020.107916.

    Article  Google Scholar 

  165. Raayai-Ardakani, S. and McKinley, G.H., Geometric Optimization of Riblet-Textured Surfaces for Drag Reduction in Laminar Boundary Layer Flows, Phys. Fluids, 2019, vol. 31, no. 5, DOI:10.1063/1.5090881.

    Article  ADS  Google Scholar 

  166. Rastegari, A. and Akhavan, R., On Drag Reduction Scaling and Sustainability Bounds of Superhydrophobic Surfaces in High Reynolds Number Turbulent Flows, J. Fluid Mech., 2019, vol. 864, pp. 327–347; DOI:10.1017/jfm.2018.1027.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  167. Rawool, A.S., Mitra, S.K., and Kandlikar, S.G., Numerical Simulation of Flow through Microchannels with Designed Roughness, Microfluidics Nanofluidics, 2006, vol. 2, no. 3, pp. 215–221; DOI:10.1007/s10404-005-0064-5.

    Article  Google Scholar 

  168. Rehman, D., Morini, G.L., and Hong, C., A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels, Micromachines, 2019, vol. 10, no. 3, DOI:10.3390/mi10030171.

    Article  Google Scholar 

  169. Sbragaglia, M. and Prosperetti, A., A Note on the Effective Slip Properties for Microchannel Flows with Ultrahydrophobic Surfaces, Phys. Fluids, 2007, vol. 19, no. 4, DOI:10.1063/1.2716438.

    Article  ADS  MATH  Google Scholar 

  170. Seo, J., Garcı́a-Mayoral, R., and Mani, A., Turbulent Flows over Superhydrophobic Surfaces: Flow-Induced Capillary Waves, and Robustness of Air–Water Interfaces, J. Fluid Mech., 2018, vol. 835, pp. 45–85; DOI:doi:10.1017/jfm.2017.733.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. Sun, J., He, Y.L., Tao, W.Q., Rose, J.W., and Wang, H.S., Multi-Scale Study of Liquid Flow in Micro/Nanochannels: Effects of Surface Wettability and Topology, Microfluidics Nanofluidics, 2012, vol. 12, no. 6, pp. 991–1008; DOI:10.1007/s10404-012-0933-7.

    Article  Google Scholar 

  172. Xu, M., Lu, H., Gong, L., Chai, J.C., and Duan, X., Parametric Numerical Study of the Flow and Heat Transfer in Microchannel with Dimples, Int. Comm Heat Mass Transfer, 2016, vol. 76, pp. 348–357; DOI:10.1016/j.icheatmasstransfer.2016.06.002.

    Article  Google Scholar 

  173. Yadav, V., Baghel, K., Kumar, R., and Kadam, S.T., Numerical Investigation of Heat Transfer in Extended Surface Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 612–622; DOI:10.1016/ j.ijheatmasstransfer.2015.10.023.

    Article  Google Scholar 

  174. Zhang, J., Yao, Z., and Hao, P., Drag Reductions and the Air-Water Interface Stability of Superhydrophobic Surfaces in Rectangular Channel Flow, Phys. Rev. E, 2016, vol. 94, no. 5, DOI:10.1103/ PhysRevE.94.053117.

    Article  ADS  Google Scholar 

  175. Zhang, J., Yao, Z., and Hao, P., Formation and Evolution of Air–Water Interfaces between Hydrophilic Structures in a Microchannel, Microfluidics Nanofluidics, 2017, vol.21, no. 8, DOI:10.1007/s10404-017-1968-6.

  176. Zhao, H., Liu, Z., Zhang, C., Guan, N., and Zhao, H., Pressure Drop and Friction Factor of a Rectangular Channel with Staggered Mini Pin Fins of Different Shapes, Exp. Thermal Fluid Sci., 2016, vol. 71, pp. 57–69; DOI:10.1016/j.expthermflusci.2015.10.010.

    Article  Google Scholar 

  177. Zuo, H., Javadpour, F., Deng, S., and Li, H., Liquid Slippage on Rough Hydrophobic Surfaces with and without Entrapped Bubbles, Phys. Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0015193.

    Article  ADS  Google Scholar 

  178. Wang, L., Wang, C., Wang, S., Sun, G., and You, B., Design and Analysis of Micro-Nano Scale Nested-Grooved Surface Structure for Drag Reduction Based on ‘Vortex-Driven Design,’ European J. Mech., B/Fluids, 2021, vol. 85, pp. 335–350; DOI:10.1016/j.euromechflu.2020.10.007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  179. Bechert, D.W., Bruse, M., Hage, W., van der Hoeven, J.G.T., and Hoppe, G., Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry, J. Fluid Mech., 1997, vol. 338, pp. 59–87; DOI:doi:10.1017/S0022112096004673.

    Article  ADS  Google Scholar 

  180. Ao, M., Wang, M., and Zhu, F., Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface, Micromachines, 2021, vol. 12, no. 1, DOI:10.3390/mi12010059.

    Article  Google Scholar 

  181. Qin, L., Hafezi, M., Yang, H., Dong, G., and Zhang, Y., Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities, Micromachines, 2019, vol. 10, no. 7, DOI:10.3390/mi10070490.

    Article  Google Scholar 

  182. Li, L., Zhu, J., Li, J., Song, H., Zeng, Z., Wang, G., et al., Effect of Vortex Frictional Drag Reduction on Ordered Microstructures, Surface Topography: Metrology Prop., 2019, vol. 7, no. 2, DOI:10.1088/2051-672X/ab1671.

    Article  ADS  Google Scholar 

  183. Saadatbakhsh, M., Jamali Asl, S., Kiani, M.J., and Nouri, N.M., Slip Length Measurement of Pdms/Hydrophobic Silica Superhydrophobic Coating for Drag Reduction Application, Surface Coatings Technol., 2020, vol. 404, DOI:10.1016/j.surfcoat.2020.126428.

    Article  Google Scholar 

  184. Wang, Z., Xu, L., Wu, X., and Chen, J., A Designable Surface via the Micro-Molding Process, Microsyst. Nanoengin., 2018, vol. 4, no. 1, DOI:10.1038/micronano.2017.99.

  185. van Buren, T. and Smits, A.J., Substantial Drag Reduction in Turbulent Flow Using Liquid-Infused Surfaces, J. Fluid Mech., 2017, vol. 827, pp. 448–456; DOI:10.1017/jfm.2017.503.

    Article  ADS  Google Scholar 

  186. Mala, G.M. and Li, D., Flow Characteristics of Water in Microtubes, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 2, pp. 142–148.

    Article  Google Scholar 

  187. Li, Z.X., Experimental Study on Flow Characteristics of Liquid in Circular Microtubes, Microscale Thermophys. Engin., 2003, vol. 7, no. 3, pp. 253–265; DOI:10.1080/10893950390219083.

    Article  Google Scholar 

  188. Bolaños, S.J. and Vernescu, B., Derivation of the Navier Slip and Slip Length for Viscous Flows over a Rough Boundary, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982899.

    Article  ADS  Google Scholar 

  189. Song, S., Yang, X., Xin, F., and Lu, T.J., Modeling of Surface Roughness Effects on Stokes Flow in Circular Pipes, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5017876.

    Article  ADS  Google Scholar 

  190. Brackbill, T.P. and Kandlikar, S.G., Effect of Sawtooth Roughness on Pressure Drop and Turbulent Transition in Microchannels, Heat Transfer Engin., 2007, vol. 28, nos. 8/9, pp. 662–669; DOI:10.1080/ 01457630701326290.

    Article  ADS  Google Scholar 

  191. Brackbill, T.P. and Kandlikar, S.G., Effect of Triangular Roughness Elements on Pressure Drop and Laminar-Turbulent Transition in Microchannels and Minichannels, Int. Conf. Nanochannels, Microchannels, and Minichannels, 2006, vol. 47608, pp. 747–755.

  192. Morini, G.L., Laminar-to-Turbulent Flow Transition in Microchannels, Microscale Thermophys. Engin., 2004, vol. 8, no. 1, pp. 15–30; DOI:10.1080/10893950490272902.

    Article  Google Scholar 

  193. Natrajan, V.K. and Christensen, K.T., The Impact of Surface Roughness on Flow through a Rectangular Microchannel from the Laminar to Turbulent Regimes, Microfluidics Nanofluidics, 2010, vol. 9, no. 1, pp. 95–121; DOI:10.1007/s10404-009-0526-2.

    Article  Google Scholar 

  194. Rands, C., Webb, B.W., and Maynes, D., Characterization of Transition to Turbulence in Microchannels, Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 17/18, pp. 2924–2930; DOI:10.1016/ j.ijheatmasstransfer.2006.02.032.

    Article  Google Scholar 

  195. Wibel, W. and Ehrhard, P., Experiments on the Laminar/Turbulent Transition of Liquid Flows in Rectangular Microchannels, Heat Transfer Engin., vol. 30, 2009, DOI:10.1080/01457630802293449.

    Article  ADS  Google Scholar 

  196. Zhou, G. and Yao, S.C., Effect of Surface Roughness on Laminar Liquid Flow in Micro-Channels, Appl. Thermal Engin., 2011, vol. 31, nos. 2/3, pp. 228–234; DOI:10.1016/j.applthermaleng.2010.09.002.

    Article  Google Scholar 

  197. Peng, X.F. and Peterson, G.P., Forced Convection Heat Transfer of Single-Phase Binary Mixtures through Microchannels, Exp. Thermal Fluid Sci., 1996, vol. 12.1, pp. 98–104; DOI:https://doi.org/10.1016/0894-1777(95)00079-8.

    Article  Google Scholar 

  198. Wang, B.X. and Peterson, G.P., Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels, Exp. Heat Transfer, 1994, vol. 7, no. 4, pp. 249–264; DOI:10.1080/08916159408946484.

    Article  ADS  Google Scholar 

  199. Nikuradse, J., Law of Flow in Rough Pipes, Technical Memorandum 1292 (National Advisory Committee for Aeronautics, 1950); [Stromungsgesetze in rauhen Rohren, VDIForschungsheft 361, Beilage zu Forschung auf dem Gebiete des Ingenieurwesens Ausgabe B Band 4 (1933) (in German)].

  200. Lea, F.C. and Tadros, A.G., CVI. Flow of Water through a Circular Tube with a Central Core and through Rectangular Tubes, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1931, vol. 11, no. 74, pp. 1235–1247; DOI:10.1080/14786443109461773.

    Article  Google Scholar 

  201. Celata, G.P., Cumo, M., McPhail, S., and Zummo, G., Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtube, Int. J. Heat Fluid Flow, 2006, vol. 27, no. 1, pp. 135–143; DOI:10.1016/j.ijheatfluidflow.2005.03.012.

    Article  Google Scholar 

  202. Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018.

    Article  Google Scholar 

  203. Hanks, R.W. and Ruo, H.C., Laminar-Turbulent Transition in Ducts of Rectangular Cross Section, IEC Fundamentals, 1966, vol. 5, no. 4, pp. 558–561.

    Article  Google Scholar 

  204. Hao, P.F., Yao, Z.H., He, F., and Zhu, K.Q., Experimental Investigation of Water Flow in Smooth and Rough Silicon Microchannels, J. Micromech. Microengin., 2006, vol. 16, no. 7, pp. 1397–1402; DOI:10.1088/0960-1317/16/7/037.

    Article  ADS  Google Scholar 

  205. Mishra, P. and Tripathi, G., Transition from Laminar to Turbulent Flow of Purely Viscous Non-Newtonian Fluids in Tubes, Chem. Engin. Sci., 1971, vol. 26, no. 6, pp. 915–921.

    Article  ADS  Google Scholar 

  206. Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018.

  207. Im, H.J. and Lee, J.H., Comparison of Superhydrophobic Drag Reduction between Turbulent Pipe and Channel Flows, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5000729.

    Article  ADS  Google Scholar 

  208. Wu, H.Y. and Cheng, P., Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios, Int. J. Heat Mass Transfer, 2003, vol. 46, no. 14, pp. 2519–2525; DOI:10.1016/S0017-9310(03)00106-6.

    Article  Google Scholar 

  209. Abu Rowin, W., Hou, J., and Ghaemia, S., Inner and outer Layer Turbulence over a Superhydrophobic Surface with Low Roughness Level at Low Reynolds Number, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5004398.

    Article  ADS  Google Scholar 

  210. Wang, G., Cheng, P., and Bergles, A.E., Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 9/10, pp. 2267–2281; DOI:10.1016/j.ijheatmasstransfer.2007.08.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ya. Gatapova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluzdov, D.S., Gatapova, E.Y. Microchannel Surface Structures for Drag Reduction. J. Engin. Thermophys. 32, 214–241 (2023). https://doi.org/10.1134/S1810232823020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020042

Navigation