Skip to main content
Log in

Aspects of Two-Phase Flow Boiling Heat Transfer inside Tube of Water Tube Boiler—A Numerical Study

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The study of flow boiling heat transfer inside larger diameter tubes, which are used in water tube boilers, is sparse in the literature. Accordingly, the present study explore numerically saturated flow boiling phenomenon of water in a horizontal plain stainless steel tube at atmospheric condition. The effect of mass flux (254.67 kg/m2s–600.00 kg/m2s), heat flux (16.97–135.00 kW/m2), surface roughness (0.15 mm–0.5 mm), inclination angle (0°–60°) and the tube diameter (5 mm–50 mm) on the flow boiling heat transfer coefficient (HTC) and overall vapor volume fraction (VVF) is investigated. A 2D k-\(\varepsilon\) turbulence model of ANSYS-FLUENT platform is used along with the Volume of Fluid (VOF) model to track the interface between the water and vapor. The numerical findings indicate that HTC rises with a rise in mass flux and declines with a rise in heat flux. Furthermore, it is revealed that when heat flux rises, the VVF in the domain increases, corroborating the observation of a drop in HTC. The observed phenomenon is quite true for conventional tubes used in industries. An improvement in flow boiling HTC is also observed for tubes with higher surface roughness. The influence of inclination angle has substantial effect on the HTC, and the HTC rises with rise in inclination angle except for larger mass flux. The HTC of smaller tube diameter is larger compared to larger tube diameter tube, and after certain range of tube diameter (20 mm) the change in HTC is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

REFERENCES

  1. Goodson, K., Rogacs, A., David, M., and Fang, C., Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel, Front. Heat Mass Transf., 2010, vol. 1, no. 1, pp. 1–11.

    Google Scholar 

  2. Wei, J.H., Pan, L.M., Chen, D.Q., Zhang, H., Xu, J.J., and Huang, Y.P., Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling under Swing Motion, Nucl. Eng. Des., 2011, vol. 241, no. 8, pp. 2898–2908.

    Article  Google Scholar 

  3. Chen, Q., Xu, J., Sun, D., Cao, Z., Xie, J., and Xing, F., Numerical Simulation of the Modulated Flow Pattern for Vertical Upflows by the Phase Separation Concept, Int. J. Multiph. Flow, 2013, vol. 56, pp. 105–118.

    Article  Google Scholar 

  4. Ma, C. and Bothe, D., Numerical Modeling of Thermocapillary Two-Phase Flows with Evaporation Using a Two-Scalar Approach for Heat Transfer, J. Comput. Phys., 2013, vol. 233, pp. 552–573.

    Article  ADS  MathSciNet  Google Scholar 

  5. Ratkovich, N., Majumder, S.K., and Bentzen, T.R., Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared against Experimental Data of Void Fraction, Chem. Eng. Res. Des., 2013, vol. 91, no. 6, pp. 988–998.

    Article  Google Scholar 

  6. Meng, M., Yang, Z., Duan, Y.Y., and Chen, Y., Boiling Flow of R141b in Vertical and Inclined Serpentine Tubes, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 1, pp. 312–320.

    Article  Google Scholar 

  7. Liu, Y., Cui, J., and Li, W.Z., A Two-Phase, Two-Component Model for Vertical Upward Gas-Liquid Annular Flow, Int. J. Heat Fluid Flow, 2011, vol. 32, no. 4, pp. 796–804.

    Article  Google Scholar 

  8. Liu, Y., Li, W.Z., and Quan, S.L., A Self-Standing Two-Fluid CFD Model for Vertical Upward Two-Phase Annular Flow, Nucl. Eng. Des., 2011, vol. 241, no. 5, pp. 1636–1642.

    Article  Google Scholar 

  9. Vazquez-Ramirez, E.E., Riesco-Avila, J.M., and Polley, G.T., Two-Phase Flow and Heat Transfer in Horizontal Tube Bundles Fitted with Baffles of Vertical Cut, Appl. Therm. Eng., 2013, vol. 50, no. 1, pp. 1274–1279.

    Article  Google Scholar 

  10. Tsui, Y.Y. and Lin, S.W., Three-Dimensional Modeling of Fluid Dynamics and Heat Transfer for Two-Fluid or Phase Change Flows, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 337–348.

    Article  Google Scholar 

  11. Hardt, S. and Wondra, F., Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms, J. Comput. Phys., 2008, vol. 227, no. 11, pp. 5871–5895.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lorstad, D. and Fuchs, L., High-Order Surface Tension VOF-Model for 3D Bubble Flows with High Density Ratio, J. Comput. Phys., 2004, vol. 200, no. 1, pp. 153–176.

    Article  ADS  MATH  Google Scholar 

  13. Prah, B. and Yun, R., Heat Transfer and Pressure Drop Simulation of CO2-Hydrate Mixture in Tube, Int. J. Air-Cond. Refrig., 2017, vol. 25 no. 1, p. 1750005.

    Article  Google Scholar 

  14. Mikielewicz, D., A New Method for Determination of Flow Boiling Heat Transfer Coefficient in Conventional-Diameter Channels and Minichannels, Heat Transf. Eng., 2010, vol. 31, no. 4, pp. 276–287.

    Article  ADS  Google Scholar 

  15. Piasecka, M. and Maciejewska, B., Heat Transfer Coefficient Determination for Flow Boiling in Vertical and Horizontal Minichannels, EPJ Web Conf., 2014, vol. 67, p. 02094.

  16. Guo, Z., Haynes, B.S., and Fletcher, D.F., Numerical Simulation of Annular Flow Boiling in Microchannels, J. Comput. Multiph. Flows, 2016, vol. 8, no. 1, pp. 61–82.

    Article  MathSciNet  MATH  Google Scholar 

  17. Singh, D., Rai, S., and Shukla, S., Numerical Analysis of Two Phase Flow Boiling Heat Transfer through Microchannel, Int. J. Eng. Res. Technol., 2017, vol. 6, pp. 1–6.

    Article  Google Scholar 

  18. Cuan, Z. and Chen, Y., Analyze of Laminar Flow and Boiling Heat Transfer Characteristics of R134a in the Horizontal Micro-Channel under Low Temperature Condition, Procedia Eng., 2017, vol. 205, pp. 2933–2939.

    Article  Google Scholar 

  19. Juric, D. and Tryggvason, G., Computations of Boiling Flows, Int. J. Multiph. Flow, 1998, vol. 24, no. 3, pp. 387–410.

    Article  MATH  Google Scholar 

  20. Kuang, Y.W., Wang, W., Zhuan, R., and Yi, C.C., Simulation of Boiling Flow in Evaporator of Separate Type Heat Pipe with Low Heat Flux, Ann. Nucl. Energy, 2015, vol. 75, pp. 158–167.

    Article  Google Scholar 

  21. Pouryoussefi, S.M. and Zhang, Y., Identification of Two-Phase Water-Air Flow Patterns in a Vertical Pipe Using Fuzzy Logic and Genetic Algorithm, Appl. Therm. Eng., 2015, vol. 85, pp. 195–206.

    Article  Google Scholar 

  22. Sato, Y. and Niceno, B., A Sharp-Interface Phase Change Model for a Mass-Conservative Interface Tracking Method, J. Comput. Phys., 2013, vol. 249, pp. 127–161.

    Article  ADS  Google Scholar 

  23. Oh, J.T., Pamitran, A.S., Choi, K.I., and Hrnjak, P., Experimental Investigation on Two-Phase Flow Boiling Heat Transfer of Five Refrigerants in Horizontal Small Tubes of 0.5, 1.5, and 3.0 mm Inner Diameters, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 9/10, pp. 2080–2088.

    Article  Google Scholar 

  24. Oh, H.K. and Son, C.H., Evaporation Flow Pattern and Heat Transfer of R-22 and R-134a in Small Diameter Tubes, Heat Mass Transfer, 2011, vol. 47, no. 6, pp. 703–717.

    Article  ADS  Google Scholar 

  25. Xu, Y., Fang, X., Li, G., Li, D., and Yuan, Y., An Experimental Study of Flow Boiling Heat Transfer of R134a and Evaluation of Existing Correlations, Int. J. Heat Mass Transfer, 2016, vol. 92, pp. 1143–1157.

    Article  Google Scholar 

  26. Chien, N.B., Vu, P.Q., Choi, K.I., and Oh, J.T., A General Correlation to Predict the Flow Boiling Heat Transfer of R410A in Macro-/Mini-Channels, Sci. Technol. Built Environ., 2015, vol. 21, no. 5, pp. 526–534.

    Article  Google Scholar 

  27. Choi, K.I., Pamitran, A.S., Oh, C.Y., and Oh, J.T., Boiling Heat Transfer of R-22, R-134a, and CO2 in Horizontal Smooth Minichannels, Int. J. Refrig., 2007, vol. 30, no. 8, pp. 1336–1346.

    Article  Google Scholar 

  28. Greco, A. and Vanoli, G.P., Flow-Boiling of R22, R134a, R507, R404A, and R410A inside a Smooth Horizontal Tube, Int. J. Refrig., 2005, vol. 28, no. 6, pp. 872–880.

    Article  Google Scholar 

  29. Park, C.Y. and Hrnjak, P.S., CO2 and R410A Flow Boiling Heat Transfer, Pressure Drop, and Flow Pattern at Low Temperatures in a Horizontal Smooth Tube, Int. J. Refrig., 2007, vol. 30, no. 1, pp. 166–178.

    Article  Google Scholar 

  30. Del Col, D., Flow Boiling of Halogenated Refrigerants at High Saturation Temperature in a Horizontal Smooth Tube, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 2, pp. 234–245.

    Article  Google Scholar 

  31. Kaew-On, J., Sakamatapan, K., and Wongwises, S., Flow Boiling Heat Transfer of R134a in the Multiport Minichannel Heat Exchangers, Exp. Therm. Fluid Sci., 2011, vol. 35, no. 2, pp. 364–374.

    Article  Google Scholar 

  32. Basu, S., Ndao, S., Michna, G.J., Peles, Y., and Jensen, M.K., Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics, ASME J. Heat Transfer, 2011, vol. 133, no. 5, p. 051502.

    Article  Google Scholar 

  33. Dorao, C.A., Fernandez, O.B., and Fernandino, M., Experimental Study of Horizontal Flow Boiling Heat Transfer of R134a at a Saturation Temperature of 18.6°C, ASME J. Heat Transfer, 2017, vol. 139, no. 11, p. 111510.

    Article  Google Scholar 

  34. Sempertegui-Tapia, D.F. and Ribatski, G., Flow Boiling Heat Transfer of R134a and Low GWP Refrigerants in a Horizontal Micro-Scale Channel, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 2417–2432.

    Article  Google Scholar 

  35. da Silva, P.K., Copetti, J.B., and Oliveira, J.D., Flow Boiling Heat Transfer of Propane in MPE Tube, Proc. Conf. IV Journeys in Multiphase Flows, 2017, vol. 27, pp. 1–9.

  36. Saitoh, S., Daiguji, H., and Hihara, E., Correlation for Boiling Heat Transfer of R-134a in Horizontal Tubes Including Effect of Tube Diameter, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 25/26, pp. 5215–5225.

    Article  MATH  Google Scholar 

  37. Li, H., Yi, F., Li, X., Pavlenko, A.N., and Gao, X., Numerical Simulation for Falling Film Flow Characteristics of Refrigerant on the Smooth and Structured Surfaces, J. Eng. Therm., 2018, vol. 27, no. 1, pp. 1–19.

    Article  Google Scholar 

  38. Sun, Y., Jiang, J., Li, J., Jiang, B., Zhang, L., He, D., Kang, Q., Yang, N., Tantai, X., and Xiao, X., Simulation of Gas-Liquid-Solid Three-Phase Flow Process and Particle Removal Characteristics in Liquid Chamber of Scrubbing Tower, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 477–491.

    Article  Google Scholar 

  39. Alekseev, M.V. and Vozhakov, I.S., 3D Numerical Simulation of Hydrodynamics and Heat Transfer in the Taylor Flow, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 299–308.

    Article  Google Scholar 

  40. Wu, J., Tang, Z., Zhu, Y., Li, X., Wang, H., and Shi, Q., Two-Phase Secondary Flow Characteristics and Heat Transfer Mechanism during Boiling in a Vertical Helically Coiled Tube, Int. Commun. Heat Mass Transfer, 2022, vol. 138, p. 106398.

    Article  Google Scholar 

  41. Lv, H., Ma, H., Zhao, Y., Mao, N., and He, T., Numerical Simulation of Flow Boiling Heat Transfer Characteristics of R134a/Ethane Binary Mixture in Horizontal Micro-Tube, Int. J. Refrig., 2022.

  42. Mohanty, R.L. and Das, M.K., A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer, Renew. Sust. Energ. Rev., 2017, vol. 78, pp. 466–494.

    Article  Google Scholar 

  43. Swain, A. and Das, M.K., A Review on Saturated Boiling of Liquids on Tube Bundles, Heat Mass Transfer, 2014, vol. 50, no. 5, pp. 617–637.

    Article  ADS  Google Scholar 

  44. Moharana, S., Bhattacharya, A., and Das, M.K., A Critical Review of Parameters Governing the Boiling Characteristics of Tube Bundle on Shell Side of Two-Phase Shell and Tube Heat Exchangers, Therm. Sci. Eng. Prog., 2022, p. 101220.

  45. Huang, Q., Jia, L., Dang, C., and Yang, L., Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel, J. Therm. Sci., 2018, vol. 27, no. 2, pp. 157–166.

    Article  ADS  Google Scholar 

  46. Zhang, J., Ma, Y., Wang, M., Zhang, D., Qiu, S., Tian, W., and Su, G., Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channels Varying from Conventional to Small-Diameter Scales by Genetic Neural Network, Nucl. Eng. Technol., 2019, vol. 51, no. 8, pp. 1897–1904.

    Article  Google Scholar 

  47. Sun, Z.C., Ma, X., Ma, L.X., Li, W., and Kukulka, D.J., Flow Boiling Heat Transfer Characteristics in Horizontal, Three-Dimensional Enhanced Tubes, Energies, 2019, vol. 12, no. 5, p. 927.

    Article  Google Scholar 

  48. Cho, J.M. and Kim, M.S., Experimental Studies on the Evaporative Heat Transfer and Pressure Drop of CO2 in Smooth and Micro-Fin Tubes of the Diameters of 5 and 9.52 mm, Int. J. Refrig., 2007, vol. 30, no. 6, pp. 986–994.

    Article  Google Scholar 

  49. Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.

    Article  ADS  MATH  Google Scholar 

  50. Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, no. 2, pp. 335–354.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Bikmukhametov, T., CFD Simulations of Multiphase Flows with Particles, M.Sc. Thesis, Norway: Norwegian University of Science and Technology, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Moharana or M. K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howlader, S., Moharana, S. & Das, M.K. Aspects of Two-Phase Flow Boiling Heat Transfer inside Tube of Water Tube Boiler—A Numerical Study. J. Engin. Thermophys. 32, 340–359 (2023). https://doi.org/10.1134/S1810232823020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020108

Navigation