Skip to main content
Log in

Investigation of Kinetics of Formation of Methane + Propane Hydrates by Molecular Dynamics Method in the Presence of Hydrate Seed and Sea Salt

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In the presented work we studied the process of nucleation and growth of methane and propane gas hydrate from a homogeneous solution by means of molecular dynamics. The aim is to assess the effect of hydrate seed on the growth rate and structure of the resulting hydrate in the presence of sea salt. This process was characterized via calculation of the number of long-lived hydrogen bonds and amount of hydrate and hydrate-like cavities, as well as the order parameter of the intermolecular torsion angles. It is shown that the kinetics of hydrate formation do not differ much in the cases of pure water and seawater. A seed crystal of hydrate on the contrary, not only increases the hydrate growth rate, but also makes the resulting structure more consistent with the cubic structure II hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Khurana, M., Yin, Z., and Linga, P., A Review of Clathrate Hydrate Nucleation, ACS Sust. Chem. Engin., 2017, vol. 5, no. 12, pp. 11176–11203.

    Article  Google Scholar 

  2. Sosso, G.C., Chen, J., Cox, S.J., Fitzner, M., Pedevilla, P., Zen, A., and Michaelides, A., Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem. Rev., 2016 vol. 116, no. 12, pp. 7078–7116.

    Article  Google Scholar 

  3. English, N.J. and MacElroy, J.M.D., Perspectives on Molecular Simulation of Clathrate Hydrates: Progress, Prospects and Challenges, Chem. Engin. Sci., 2015, vol. 121, pp. 133–156.

    Article  ADS  Google Scholar 

  4. Sloan, E.D., Jr., and Fleyfel, F., A Molecular Mechanism for Gas Hydrate Nucleation from Ice, AIChE J., 1991, vol. 37, no. 9, pp. 1281–1292.

    Article  Google Scholar 

  5. Radhakrishnan, R. and Trout, B.L., A New Approach for Studying Nucleation Phenomena Using Molecular Simulations: Application to CO2 Hydrate Clathrates J. Chem. Phys., 2002, vol. 117, no. 4, pp. 1786–1796.

    Article  ADS  Google Scholar 

  6. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gasses, 3rd ed., Boca Raton: CRC Press, 2008.

    Google Scholar 

  7. Klapproth, A., Piltz, R.O., Kennedy, S.J., and Kozielski, K.A., Kinetics of sII and Mixed sI/sII, Gas Hydrate Growth for a Methane/Propane Mixture Using Neutron Diffraction J. Phys. Chem. C, 2019, vol. 123, pp. 2703–2715.

    Article  Google Scholar 

  8. Ballard, A.L. and Sloan, E.D., Jr., Hydrate Phase Diagrams for Methane + Ethane + Propane Mixtures Chem. Engin. Sci., 2001, vol. 56, pp. 6883–6895.

    Article  ADS  Google Scholar 

  9. Zhang, Z., Guo, G.J., Wu, N., and Kusalik, P.G., Molecular Insights into Guest and Composition Dependence of Mixed Hydrate Nucleation, J. Phys. Chem. C, 2020, vol. 124, no. 45, pp. 25078–25086.

    Article  Google Scholar 

  10. Jiménez-Ángeles, F. and Firoozabadi, A., Nucleation Pathways of Gas Hydrates from Molecular Dynamics Simulations, Procs. of the 8th Int. Conf. on Gas Hydrates (ICGH8-2014), Beijing, China, 2014.

  11. Babu, P., Kumar, R., and Linga, P., Unusual Behavior of Propane as a Co-Guest During Hydrate Formation in Silica Sand: Potential Application to Seawater Desalination and Carbon Dioxide Capture, Chem. Engin. Sci., 2014, vol. 117, pp. 342–351.

    Article  ADS  Google Scholar 

  12. Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.

    Article  Google Scholar 

  13. Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.

    Article  Google Scholar 

  14. Bai, D., Chen, G., Zhang, X., and Wang, W., Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces, Langmuir, 2011, vol. 27, no. 10, pp. 5961–5967.

    Article  Google Scholar 

  15. Bai, D., Chen, G., Zhang, X., Sum, A.K., and Wang, W., How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate, Sci. Rep., 2015, vol. 5, no. 1, pp. 1–12.

    Article  Google Scholar 

  16. Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.

    Article  Google Scholar 

  17. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in ’t Velde, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., and Plimpton, S.J., LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales, Comp. Phys. Commun., 2022, vol. 271, p. 108171.

    Article  MATH  Google Scholar 

  18. Nosé, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molec. Phys., 1984, vol. 52, no. 2, pp. 255–268.

    Article  ADS  Google Scholar 

  19. Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, no. 3, p. 1695.

    Article  ADS  Google Scholar 

  20. Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, McGraw-Hill, 1981.

    MATH  Google Scholar 

  21. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput. Phys., 1977, vol. 23, no. 3, pp. 327–341.

    Article  ADS  Google Scholar 

  22. Zhdanov, R.K., Adamova, T.P., Subbotin, O.S., Pomeranskii, A.A., Belosludov, V.R., Dontsov, V.R., and Nakoryakov, V.E., Modeling the Properties of Methane + Ethane (Propane) Binary Hydrates, Depending on the Composition of Gas Phase State in Equilibrium with Hydrate, J. Eng. Therm., 2010, vol. 19, no. 4, pp. 282–288.

    Article  Google Scholar 

  23. Abascal, J.L.F., Sanz, E., Garcı́a Fernández, R., and Vega, C., A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice, J. Chem. Phys., 2005, vol. 122, no. 23, p. 234511.

    Article  ADS  Google Scholar 

  24. Martin, M.G. and Siepmann, J.I., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes, J. Phys. Chem. B, 1998, vol. 102, no. 14, pp. 2569–2577.

    Article  Google Scholar 

  25. Tanaka, H., The Thermodynamic Stability of Clathrate Hydrate. III. Accommodation of Nonspherical Propane and Ethane Molecules, J. Chem. Phys., 1994, vol. 101, no. 12, pp. 10833–10842.

    Article  ADS  Google Scholar 

  26. Cygan, R.T., Liang, J.J., and Kalinichev, A.G., Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, 2004, vol. 108, no. 4, pp. 1255–1266.

    Article  Google Scholar 

  27. Matsumoto, M., Saito, S., and Ohmine, I., Molecular Dynamics Simulation of the Ice Nucleation and Growth Process Leading to Water Freezing, Nature, 2002, vol. 416, no. 6879, pp. 409–413.

    Article  ADS  Google Scholar 

  28. Rodger, P.M., Forester, T.R., and Smith, W., Simulations of the Methane Hydrate/Methane Gas Interface near Hydrate Forming Conditions, Fluid Phase Equil., 1996, vol. 116, nos. 1/2, pp. 326–332.

    Article  Google Scholar 

  29. Belosludov, V.R., Gets, K.V., Zhdanov, R.K., Bozhko, Y., Belosludov, R.V., and Chen, L.J., Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate JETP Lett., 2022, vol. 115, no. 3, pp. 124–129.

    Article  ADS  Google Scholar 

  30. Chen, Y., Chen, C., and Sum, A.K., Molecular Resolution into the Nucleation and Crystal Growth of Clathrate Hydrates Formed from Methane and Propane Mixtures Crystal Growth Des., 2021, vol. 21, no. 2, pp. 960–973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, R.K., Gets, K.V., Bozhko, Y.Y. et al. Investigation of Kinetics of Formation of Methane + Propane Hydrates by Molecular Dynamics Method in the Presence of Hydrate Seed and Sea Salt. J. Engin. Thermophys. 32, 312–320 (2023). https://doi.org/10.1134/S181023282302008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282302008X

Navigation