Skip to main content
Log in

Heat Transfer in a Falling Liquid Film of Freon R21 on an Array of Horizontal Tubes with Modified MAO Coatings

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents the results of a study of heat transfer in a falling film of freon R21 on a single-row bundle of horizontal tubes made of aluminum alloys with outer diameters of 10 mm and modified oxide porous coatings. The oxide coatings were deposited by micro-arc oxidation (MAO) in phosphate, acid, and silicate-alkaline electrolytes. The surface modification of the MAO coatings consisted in the deposition of copper particles in a solution of copper sulphate. The heat transfer coefficients for the modified MAO coatings were compared with the results for the surface of tubes with base MAO coatings in electrolytes of similar compositions, as well as for a smooth metal tube without coating for Reynolds numbers of the falling film varying from 600 to 1500. Additional surface treatment of the porous ceramic coatings by the deposition of copper particles has led to a significant decrease in the heat transfer coefficients in the falling film compared with the base MAO coatings. The highest enhancement of the heat transfer relative to the case of the smooth tube (of up to 80%) was obtained on the modified MAO coating deposited in the phosphate electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Therm. Eng., 2019, vol. 66, no. 12, pp. 881–915; DOI:10.1134/S0040601519120012

    Article  ADS  Google Scholar 

  2. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, nos. 2–6, pp. 405–432; DOI:10.1134/S0018151X21020140

    Article  Google Scholar 

  3. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Therm. Fluid Sci., 2015, vol. 66, pp. 173–196; https://doi.org/10.1016/j.expthermflusci.2015.03.023.

    Article  Google Scholar 

  4. Khan, S.A., Atieh, M.A., and Koç, M., Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review, Energies, 2018, vol. 11, p. 3189; DOI:10.3390/en11113189

    Article  Google Scholar 

  5. Chen, J., Ahmad, Sh., Cai, J., Liu, H., Lau, K.T., and Zhao, J., Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review, Energy, 2021, vol. 215, prt. A, p. 119114; https://doi.org/10.1016/j.energy.2020.119114.

    Article  Google Scholar 

  6. Liang, G. and Mudawar, I., Review of Nanoscale Boiling Enhancement Techniques and Proposed Systematic Testing Strategy to Ensure Cooling Reliability and Repeatability, Appl. Thermal Eng., 2021, vol. 184, p. 115982; https://doi.org/10.1016/j.applthermaleng.2020.115982.

    Article  Google Scholar 

  7. Upot, N., Fazle Rabbi, K., Khodakarami, S., Ho, J.Y., Kohler Mendizabal, J., and Miljkovic, N., Advances in Micro and Nanoengineered Surfaces for Enhancing Boiling and Condensation Heat Transfer: A Review, Nanoscale Adv., 2023, vol. 5, pp. 1232–1270; DOI:10.1039/d2na00669c

    Article  ADS  Google Scholar 

  8. Serdyukov, V.S., Volodin, O.A., Bessmeltsev, V.P., and Pavlenko, A.N., Heat Transfer Enhancement during Pool Water Boiling Using 3D Printed Capillary-Porous Coatings, J. Eng. Therm., 2022, vol. 31, no. 2, pp. 201–209; DOI.org/10.1134/S1810232822020011

    Article  Google Scholar 

  9. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349; https://doi.org/10.1134/S1810232821030012.

    Article  Google Scholar 

  10. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Evaporation and Boiling of Liquid on Capillary-Porous Surfaces Created by 3D Printing, J. Phys.: Conf. Ser., 2021, vol. 2119, no. 1, p. 012075; https://doi.org/10.1088/1742-6596/2119/1/012075.

    Article  Google Scholar 

  11. Suminov, I.V., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Mikrodugovoe oksidirovanie: teoriya, tekhnologiya, oborudovanie (Micro-Arc Oxidation: Theory, Technology, and Equipment), Moscow: Ekomet, 2005, chs. 2, 4, and 5.

    Google Scholar 

  12. Alykretsky, R.V., Ravodina, D.V., Trushkina, T.V., Vakhteev, E.V., and Alekseeva, E.G., Antierosion Coatings Development for Power Units of Space Crafts; Network Sci. Periodic Publ., 2014, vol. 74, pp. 29–30; http://trudymai.ru/eng/published.php?ID=49348.

    Google Scholar 

  13. Xi, K., Wu, H., Zhou, C., Qi, Z., Yang, K., Fu, R.K.Y., Xiao, S., Wu, G., Ding, K., Chen, G., and Chu, P.K., Improved Corrosion and Wear Resistance of Micro-Arc Oxidation Coatings on the 2024 Aluminum Alloy by Incorporation of Quasi-Two-Dimensional Sericite Microplates, Appl. Surface Sci., 2022. vol. 585, p. 152693; https://doi.org/10.1016/j.apsusc.2022.152693.

    Article  Google Scholar 

  14. Nikiforov, A.A., Nikiforova, G.L., Terleeva, O.P., Slonova, A.I., Eshchenko, V.N., and Li, D.K., Device for Micro-Electric Arc Oxidation, RF Patent C1 2248416, 2005.

  15. Miheev, A.E., Girn, A.V., Alykretsky, R.V., Ravodina, D.V., and Trushkina, T.V., Study of Emissivity Infrared Heaters Coated with MAO Coating, Vestnik SibGAU, 2014, vol. 54, no. 2, pp. 132–137.

    Google Scholar 

  16. Zhukov, V.M., Elagina, O.Yu., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Lenkov, V.A., Slobodyannikov, B.A., and Stenina, N.A., Heat Transfer Intensification at Boiling of Liquid Nitrogen by Applying Submicron Ceramic Coatings on the Surface of Aluminum Alloy Bodies, Therm. Proc. Engin., 2014, vol. 6, no. 12, pp. 553–559.

    Article  Google Scholar 

  17. Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Lenkov, V.A., Heat Transfer Investigation at Boiling of Nitrogen and Freon 113 on a Sphere with Coating Based on Al2O3 Obtained by Microarc Oxidation, Therm. Proc. Engin., 2016, vol. 8, no. 8, pp. 363–360.

    Article  Google Scholar 

  18. Zhukov, V.M., Kuzma-Kichta, Yu.A., Lavrikov, A.V., Belov, K.I., and Len’kov, V.A., Heat Transfer Enhancement at Boiling of Different Liquids on Spheres with Coatings Formed Using Micro-Arc Oxidation Technique, Therm. Proc. Engin., 2017, vol. 9, no. 12, pp. 537–543.

    Article  Google Scholar 

  19. Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., Khodakov, K.A., and Epel’fel’d, A.V., Characteristics of Subcooled Water Boiling on Structured Surfaces, High Temp., 2017, vol. 55, no. 6, pp. 880–886; https://doi.org/10.1134/S0018151X17060189.

    Article  Google Scholar 

  20. Pavlenko, A.N., Pecherkin, N.I., Volodin, O.A., Kataev, A.I., and Mironova, I.B., Heat Transfer in the Falling Liquid Film on an Array of Horizontal Tubes with MAO Coating, J. Phys.: Conf. Ser., 2020, vol. 1677, p. 012091; DOI:10.1088/1742-6596/1677/1/012091

    Article  Google Scholar 

  21. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., Mironova, I.B., and Das, M.K., Heat Transfer at Film Cooling of an Array of Horizontal Tubes with an Enhanced Surface, J. Phys.: Conf. Ser. (ICAE 2021), 2021, vol. 2096, p. 012141; DOI:10.1088/1742-6596/2096/1/012141

    Article  Google Scholar 

  22. Pecherkin, N., Volodin, O., Pavlenko, A., Kataev, A., and Mironova, I., Heat Transfer Enhancement Experiments in R21 Falling Film over a Bundle of MAO-Coated Horizontal Tubes, Int. Comm. Heat Mass Transfer, 2021, vol. 129, p. 105743; https://doi.org/10.1016/j.icheatmasstransfer.2021.105743.

    Article  Google Scholar 

  23. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Das, M.K., Kataev, A.I., and Mironova, I.B., Heat Transfer in Falling Films of R21 Refrigerant on a Single-Row Bundle of Horizontal Tubes with Porous Coatings, Proc. XXXVII Siberian Thermophysical Seminar (STS 37), 2021, 2021, p. 124.

  24. Chun, K.R. and Seban, R.A., Heat Transfer to Evaporating Liquid Films, ASME J. Heat Transfer, 1971, vol. 94, no. 4, pp. 391–396.

    Article  Google Scholar 

  25. Aladjev, I.T., Heat Transfer in Liquids at Convective Boiling in Tubes and at Pool Boiling, Teploenerg., 1963, no. 4, pp. 57–61.

  26. Alhusseini, A.A., Tuzla, K., and Chen, J.C., Falling Film Evaporation of Single Component Liquids, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 12, pp. 1623–1632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Pecherkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecherkin, N.I., Pavlenko, A.N. & Volodin, O.A. Heat Transfer in a Falling Liquid Film of Freon R21 on an Array of Horizontal Tubes with Modified MAO Coatings. J. Engin. Thermophys. 32, 196–207 (2023). https://doi.org/10.1134/S1810232823020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020029

Navigation