Skip to main content
Log in

Experimental Study of a House-Hold Dual Evaporation Temperatures Based Chiller

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Indoor environment control strategies in small buildings are simply considered, such as achieving the indoor temperature control through ON/OFF cycling the compressor of a direct expansion (DX) air conditioning (A/C) system, leaving the indoor humidity uncontrolled. In some areas, the large latent cooling load will lead to an unstable and high indoor humidity, resulting in deteriorating thermal comfort, indoor air quality and energy efficiency, suggesting that an actively controlled humidity is indispensable. The existing temperature and humidity independent control (THIC) methods are too complicated to be suitable for applying in small buildings. Therefore, the authors established a water chiller which can be applied in residential buildings for THIC by using a dual-evaporation-temperature compressor. A prototype was built and experimentally tested. Results showed that in the varying summer condition, the high and low water supplying temperatures were maintained around 18.8°C and 7.8°C, respectively, suggesting that this novel chiller could provide chilled water of two different temperatures for THIC. Furthermore, the energy efficiency ratios (EER) of the compressor was 3.5, which was comparable to those conventional DX A/C systems or chillers of the same size. Therefore, this novel chiller based on dual evaporation temperatures was feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

REFERENCES

  1. Building Energy Research Center of Tsinghua University, 2020 Annual Report on China Building Eenrgy Efficiency, 2021.

  2. Berglund, L.G., Comfort and Humidity, ASHRAE Trans., 1998, vol. 40, pp. 35–41.

    Google Scholar 

  3. Toftum, P.O.F.J., Air Humidity Requirements for Human Comfort, ASHRAE Trans., 1999, vol. 2.

  4. Arens, E.A., Indoor Humidity and Human Health: Part II—Buildings and Their Systems, ASHRAE Trans., 1996, vol. 102, pp. 212–221.

    ADS  Google Scholar 

  5. Sterling, E.M. and Arundel, A., Criteria for Human Exposure to Humidity in Occupied Building, ASHRAE Trans. B, 1985, vol. 91, pp. 611–622.

    Google Scholar 

  6. Li, B., Du, C., Tan, M., Liu, H., and Essah, E., A Modified Method of Evaluating the Impact of Air Humidity on Human Acceptable Air Temperatures in Hot-Humid Environments, Energy Build., 2018, vol. 158, pp. 393–405; http://doi:10.1016/j.enbuild.2017.09.062.

    Article  Google Scholar 

  7. Shehadi, M., Review of Humidity Control Technologies in Buildings, J. Build. Eng., 2018, vol. 19, pp. 539–551; http://doi:10.1016/j.jobe.2018.06.009.

    Article  Google Scholar 

  8. Zhao, L., Jianbo, C., Haizhao, Y., and Lingchuang, C., The Development and Experimental Performance Evaluation on a Novel Household Variable Refrigerant Flow Based Temperature Humidity Independently Controlled Radiant Air Conditioning System, Appl. Therm. Eng., 2017, vol. 122, pp. 245–252; http://doi:10.1016/j.applthermaleng.2017.04.056.

    Article  Google Scholar 

  9. Zhao, L., Jianbo, C., Fei, W., Lingchuang, C., and Minglu, Q., A Simulation Study for Evaluating the Performances of Different Types of House-Hold Radiant Air Conditioning Systems, Appl. Therm. Eng., 2018, vol. 131, pp. 553–564; http://doi:10.1016/j.applthermaleng.2017.12.043.

    Article  Google Scholar 

  10. Chen, W. and Deng, S., Development of a Dynamic Model for a DX VAV Air Conditioning System, 2006, vol. 47, pp. 2900–2924; http://doi:10.1016/j.enconman.2006.03.032.

    Article  Google Scholar 

  11. Chen, W. nad Deng, S., Research on a Novel DDC-Based Capacity Controller for the Direct-Expansion Variable-Air-Volume A/C System, Energy Convers. Manag., 2010, vol. 51, pp. 1–8; http://doi:10.1016/ j.enconman.2009.05.028.

    Article  Google Scholar 

  12. Qi, Q. and Deng, S., Multivariable Control-Oriented Modeling of a Direct Expansion (DX) Air Conditioning (A/C) System, Int. J. Refrig., 2008, vol. 31, pp. 841–849; http://doi:10.1016/j.ijrefrig.2007.10.009.

    Article  Google Scholar 

  13. Qi, Q. and Deng, S., Multivariable Control of Indoor Air Temperature and Humidity in a dIrect Expansion (DX) Air Conditioning (A/C) System, Build. Environ., 2009, vol. 44, pp. 1659–1667; http://doi:10.1016/ j.buildenv.2008.11.001.

    Article  Google Scholar 

  14. Li, Z. and Deng, S., An Experimental Study on the Inherent Operational Characteristics of a Direct Expansion (DX) Air Conditioning (A/C) Unit, Build. Environ., 2007, vol. 42, pp. 1–10; http://doi:10.1016/ j.buildenv.2005.08.021.

    Article  Google Scholar 

  15. Xu, X., Xia, L., Chan, M., and Deng, S., Inherent Correlation between the Total Output Cooling Capacity and Equipment Sensible Heat Ratio of a Direct Expansion Air Conditioning System under Variable-Speed Operation, Appl. Therm. Eng., 2010, vol. 30, pp. 1601–1607; http://doi:10.1016/j.applthermaleng.2010.03.016.

    Article  Google Scholar 

  16. Li, Z., Xu, X., Deng, S., and Pan, D., Further Study on the Inherent Operating Characteristics of a Variable Speed Direct Expansion Air Conditioning System, Appl. Therm. Eng., 2014, vol. 66, pp. 206–215; http://doi:10.1016/j.applthermaleng.2014.02.019.

    Article  Google Scholar 

  17. Li, Z., Xu, X.G., Deng, S.M., and Pan, D.M., A Novel Neural Network Aided Fuzzy Logic Controller of a VS DX A/C System, Appl. Therm. Eng., 2015, vol. 78, pp. 9–23.

    Article  Google Scholar 

  18. Chen, W., Chan, M., Weng, W., Yan, H., and Deng, S., Development of a Steady-State Physical-Based Mathematical Model for a Direct Expansion Based Enhanced Dehumidification Air Conditioning System, Int. J. Refrig., 2018, vol. 91, pp. 55–68; http://doi:10.1016/j.ijrefrig.2018.04.028.

    Article  Google Scholar 

  19. Chen, W., Chan, M., Weng, W., Yan, H., and Deng, S., An Experimental Study on the Operational Characteristics of a Direct Expansion Based Enhanced Dehumidi Fi Cation Air Conditioning System, Appl. Energy, 2018, vol. 225, pp. 922–933; http://doi:10.1016/j.apenergy.2018.05.074.

    Article  Google Scholar 

  20. Chen, W., Chan, M., Deng, S., Yan, H., and Weng, W., A Direct Expansion Based Enhanced Dehumidi Fi Cation Air Conditioning System for Improved Year-Round Indoor Humidity Control in Hot and Humid Climates, Build. Environ., 2018, vol. 139, pp. 95–109; http://doi:10.1016/j.buildenv.2018.05.019.

    Article  Google Scholar 

  21. Yang, L., Yan, H.X., Deng, S.M., and Li, W.L., An Experimental Investigation on the Operational Characteristics of a Novel Direct Expansion Based Air Conditioning System with a Two-Sectioned Cooling Coil, Int. J. Refrig., 2020, vol. 118, pp. 131–138.

    Article  Google Scholar 

  22. Yang, L., Weng, W.B., and Deng, S.M., A Modeling Study on a Direct Expansion Based Air Conditioner Having a Two-Sectioned Cooling Coil, Appl. Energ., 2020, vol. 278, p. 115688.

    Article  Google Scholar 

  23. Yang, L., Deng, S.M., Fang, G.Y., and Li, W.L., Improved Indoor Air Temperature and Humidity Control Using a Novel Direct-Expansion-Based Air Conditioning System, J. Build. Eng., 2021, vol. 43, p. 102920.

    Article  Google Scholar 

  24. Niu, R., Fan, Y., and Geng, L., Adaptablility of a Temperature and Humidity Independent Control Air Conditioning System in Green Office Buildings, J. Build. Eng., 2021, vol. 42; http://doi:10.1016/ j.jobe.2021.102432.

    Article  Google Scholar 

  25. Meng, N., Li, T., Wang, J., Jia, Y., Liu, Q., and Qin, H., Synergetic Cascade-Evaporation Mechanism of a Novel Building Distributed Energy Supply System with Cogeneration and Temperature and Humidity Independent Control Characteristics, Energy Convers. Manag., 2020, vol. 209, p. 112620; http://doi:10.1016/j.enconman.2020.112620.

    Article  Google Scholar 

  26. Li, T., Jia, Y., Wang, J., Meng, N., Liu, Q., and Qin, H., Energy, Economic and Environmental Evaluation of a Novel Combined Cooling and Power System Characterized by Temperature and Humidity Independent Control, Energy Convers. Manag., 2020, vol. 215, p. 112929; http://doi:10.1016/j.enconman.2020.112929.

    Article  Google Scholar 

  27. Chen, T., Yin, Y., and Zhang, X., Applicability and Energy Efficiency of Temperature and Humidity Independent Control Systems Based on Dual Cooling Sources, Energy Build., 2016, vol. 121, pp. 22–31; http://doi:10.1016/j.enbuild.2016.04.001.

    Article  Google Scholar 

  28. Song, M., Wang, L., Yuan, J., Wang, Z., Li, X., and Liang, K., Proposal and Parametric Study of Solar Absorption/Dual Compression Hybrid Refrigeration System for Temperature and Humidity Independent Control Application, Energy Convers. Manag., 2020, vol. 220, p. 113107; http://doi:10.1016/ j.enconman.2020.113107.

    Article  Google Scholar 

  29. Gao, D.C., Sun, Y.J., Ma, Z., and Ren, H., A Review on Integration and Design of Desiccant Air-Conditioning Systems for Overall Performance Improvements, Renew. Sust. Energ. Rev., 2021, vol. 141, p. 110809; http://doi:10.1016/j.rser.2021.110809.

    Article  Google Scholar 

  30. La, D., Dai, Y.J., Li, Y., Wang, R.Z., and Ge, T.S., Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review, Renew. Sust. Energ. Rev., 2010, vol. 14, pp. 130–147; http://doi:10.1016/j.rser.2009.07.016.

    Article  Google Scholar 

  31. Buker, M.S. and Riffat, S.B., Recent Developments in Solar Assisted Liquid Desiccant Evaporative Cooling Technology—A Review, Energy Build., 2015, vol. 96, pp. 95–108; http://doi:10.1016/ j.enbuild.2015.03.020.

    Article  Google Scholar 

  32. Guan, B., Liu, X., Zhang, Q., and Zhang, T., Performance of a Temperature and Humidity Independent Control Air-Conditioning System Based on Liquid Desiccant for Industrial Environments, Energy Build., 2020, vol. 214, p. 109869; http://doi:10.1016/ j.enbuild.2020.109869.

    Article  Google Scholar 

  33. Guan, B., Liu, X., and Zhang, T., Optimization of Solution Concentration in Liquid Desiccant Air-Conditioning System Driven by Heat Pump, Energy Build., 2020, vol. 225, p. 110290; http://doi:10.1016/ j.enbuild.2020.110290.

    Article  Google Scholar 

  34. Ge, T.S., Yang, T.Y., Lu, F.L., Dai, Y.J., and Wang, R.Z., A Novel Semi-Coupled Solid Desiccant Heat Pump System, Part 2: Experimental Investigation, Int. J. Refrig., 2021, vol. 121, pp. 86–94; http://doi:10.1016/ j.ijrefrig.2020.10.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, L., Liu, C.H. et al. Experimental Study of a House-Hold Dual Evaporation Temperatures Based Chiller. J. Engin. Thermophys. 32, 360–377 (2023). https://doi.org/10.1134/S181023282302011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282302011X

Navigation