Skip to main content
Log in

Enhancement of Heat Transfer during Nitrogen Boiling on Capillary-Porous Coatings under Conditions of Intense Mass Forces at High-Speed Rotation of Cryostat

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This article presents the results of experimental studies of the efficiency of heat transfer under conditions of intense fields of mass forces on a flat rectangular (\(16 \times 24\) mm2) heat-transfer surface (HS) modified by additive manufacturing. A porous sinusoidal-form coating consisting of spherical bronze granules of average diameter of 35 \(\mu\)m was 3D printed on the brass base of the heat-transfer unit. The thickness of the coating was 150 \(\mu\)m in the deepenings and 300 \(\mu\)m on the ridges. Comparative experimental studies were carried out on an unmodified HS and modified HS in liquid nitrogen under conditions of centrifugal accelerations of up to 4090 g. The heat transfer was studied in the range of heat flux densities of \(4 \cdot 10^{4}{-}8.9\cdot 10^{5}\) W/m2. It has been shown that in the range of heat flux densities of \(80,000<q< 320,000\) W/m2, increase in the intensity of the mass force fields leads to growth in the heat transfer coefficient up to 4 times at transition from the developed boiling regime to the single-phase convection regime. In the region of developed boiling, for the heat flux density range corresponding to a given overload, the heat transfer coefficient normalized to the value of the heat transfer coefficient calculated as per the Borishansky relation for these conditions decreases with increasing centrifugal overload. The dependence of the relative heat transfer coefficient on the overload is close to the ratio \(\alpha_{\rm s}/\alpha_{\rm sB} \sim \eta^{-1/6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn H.S., Review of Boiling Heat Transfer Enhancement on Micro/nanostructured Surfaces, Exp. Thermal Fluid Sci., 2015, vol. 66, pp. 173–196; doi.org/10.1016/j.expthermflusci.2015.03.023.

    Article  Google Scholar 

  2. Lin, T., Ma, X., Quan, X., Cheng, P., and Chen, G., Enhanced Pool Boiling Heat Transfer on Freeze-Casted Surfaces, Int. J. Heat Mass Transfer, 2020, vol. 153, p. 119622; doi.org/10.1016/ j.ijheatmasstransfer.2020.119622.

    Article  Google Scholar 

  3. Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Appl. Thermal Engin., 2017, vol. 113, pp. 1345–1357; doi.org/10.1016/j.applthermaleng.2016.11.135.

    Article  Google Scholar 

  4. Das, S., Kumar, D.S., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface, Appl. Thermal Engin., 2016, vol. 96, pp. 555–567; doi.org/10.1016/j.applthermaleng.2015.11.117.

    Article  Google Scholar 

  5. Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., and Sundén, B., Pool Boiling Heat Transfer of FC-72 on Pin-Fin Silicon Surfaces with Nanoparticle Deposition, Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 1019–1033; doi.org/10.1016/j.ijheatmasstransfer.2018.05.033.

    Article  Google Scholar 

  6. Pontes, P., Cautela, R., Teodori, E., Moita, A., Liu, Y., Moreira, A.L.N., Nikulin, A., and del Barrio, E.P., Effect of Pattern Geometry on Bubble Dynamics and Heat Transfer on Biphilic Surfaces, Exp. Thermal Fluid Sci., 2020, vol. 115, p. 110088; doi.org/10.1016/j.expthermflusci.2020.110088.

    Article  Google Scholar 

  7. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049.

    Article  Google Scholar 

  8. Arenales, M.R.M., Kumar, S., Kuo, L.S., and Chen, P.H., Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119399; doi.org/10.1016/ j.ijheatmasstransfer.2020.119399.

    Article  Google Scholar 

  9. Kumar, S., Chang, Y.W., and Chen, P.H., Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns, J. Visual. Exp., 2017, vol. 122, p. 55387; DOI:10.3791/55387

    Article  Google Scholar 

  10. Vladimirov, V.Yu. and Chinnov, E.A., Heat Transfer Enhancement when Boiling on Finned Surfaces, J. Phys.: Conf. Ser., 2021, vol. 1867, p. 012024; DOI:10.1088/1742-6596/1867/1/012024

    Article  Google Scholar 

  11. Ma, X. and Cheng, P., Dry Spot Dynamics and Wet Area Fractions in Pool Boiling on Micro-Pillar and Micro-Cavity Hydrophilic Heaters: A 3D Lattice Boltzmann Phase-Change Study, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 407–418; doi.org/10.1016/j.ijheatmasstransfer.2019.06.086.

    Article  Google Scholar 

  12. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Wettability Modification to Further Enhance the Pool Boiling Performance of the Micro Nano bi-Porous Copper Surface Structure, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 333–342; doi.org/10.1016/j.ijheatmasstransfer.2017.11.080.

    Article  Google Scholar 

  13. Mo, D.C., Yang, S., Luo, J.L., Wang, Y.Q., and Lyu, S.S., Enhanced Pool Boiling Performance of a Porous Honeycomb Copper Surface with Radial Diameter Gradient, Int. J. Heat Mass Transfer, 2020, vol. 157, p. 119867; doi.org/10.1016/j.ijheatmasstransfer.2020.119867.

    Article  Google Scholar 

  14. Jo, H., Yu, D.I., Noh, H., Park, H.S., and Kim, M.H., Boiling on Spatially Controlled Heterogeneous Surfaces: Wettability Patterns on Microstructures, Appl. Phys. Lett., 2015, vol. 106, p. 181602; doi.org/ 10.1063/1.4919916.

    Article  ADS  Google Scholar 

  15. Gregorčič, P., Zupančič, M., and Golobič, I., Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High and Low-Surface-Tension Fluids, Sci. Rep., 2018, vol. 8, no. 7461, pp. 1–8; doi.org:10.1038/s41598-018-25843-5.

    Article  Google Scholar 

  16. Tran, N., Sajjad, U., Lin, R., and Wang, C.C., Effects of Surface Inclination and Type of Surface Roughness on the Nucleate Boiling Heat Transfer Performance of HFE-7200 Dielectric Fluid, Int. J. Heat Mass Transfer, 2020, vol. 147, p. 119015; doi.org/10.1016/j.ijheatmasstransfer.2019.119015.

    Article  Google Scholar 

  17. Cao, Z., Wu, Z., Pham, A.D., Yang, Y., Abbood, S., Falkman, P., and Sundén, B., Pool Boiling of HFE-7200 on Nanoparticle-Coating Surfaces: Experiments and Heat Transfer Analysis, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 548–560; doi.org/10.1016/j.ijheatmasstransfer.2018.12.140.

    Article  Google Scholar 

  18. Manetti, L.L., Ribatski, G., de Souza, R.R., and Cardoso, E.M., Pool Boiling Heat Transfer of HFE-7100 on Metal Foams, Exp. Thermal Fluid Sci., 2020, vol. 113, p. 110025; doi.org/10.1016/ j.expthermflusci.2019.110025.

    Article  Google Scholar 

  19. McGillis, W.R., Carey, V.P., Fitch, J.S., and Hamburgen, W.R., Pool Boiling Enhancement Techniques for Water at Low Pressure, 1991 Procs., Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, 1991, pp. 64–72; DOI:10.1109/STHERM.1991.152914

  20. Rainey, K.N. and You, S.M., Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, 2000, vol. 122, no. 3, pp. 509–516; doi.org/10.1115/ 1.1288708.

    Article  Google Scholar 

  21. Yu, C.K. and Lu, D.C., Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 17/18, pp. 3624–3637; doi.org/10.1016/ j.ijheatmasstransfer.2007.02.003.

    Article  Google Scholar 

  22. Shen, C., Zhang, C., Bao, Y., Wang, X., Liu, Y., and Ren, L., Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes, Int. J. Thermal Sci., 2018, vol. 130, pp. 47–58; doi.org/10.1016/j.ijthermalsci.2018.04.011.

    Article  Google Scholar 

  23. Kaniowski, R., Pastuszko, R., and Nowakowski, Ł., Effect of Geometrical Parameters of Open Microchannel Surfaces on Pool Boiling Heat Transfer, EPJ Web Conf., 2017, vol. 143, p. 02049; doi.org/10.1051/epjconf/ 201714302049.

  24. Khmel, S.Y., Baranov, E.A., Safonov, A.I., Vladimirov, V.Yu., and Chinnov, E.A., Experimental Study of Pool Boiling on Heaters with Nanomodified Surfaces under Saturation, Heat Transfer Engin., 2021, vol. 42, no. 22; DOI:10.1080/01457632.2021.2009211

    Article  ADS  Google Scholar 

  25. Pecherkin, N.I., Pavlenko, A.N., Volodin, O.A., Kataev, A.I., and Mironova I.B., Experimental Study of Heat Transfer Enhancement in a Falling Film of R21 on an Array of Horizontal Tubes with MAO Coating, Int. Comm. Heat Mass Transfer., 2021, vol. 129, pp. 105743-1–105743-13; doi.org/10.1016/ j.icheatmasstransfer.2021.105743.

    Article  Google Scholar 

  26. Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling under Conditions of Natural Convection, Thermophys. Aeromech., 2022, vol. 29, no. 3, pp. 423–426; doi.org/10.1134/S0869864322030106.

    Article  ADS  Google Scholar 

  27. Zhukov, V.E., Slesareva, E.Yu., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Engin. Thermophys., 2021, vol. 30, pp. 1–13; doi.org/10.1134/S181023282101001X.

    Article  Google Scholar 

  28. Bessmeltsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Development of a Technology for Creating Structured Capillary-Porous Coatings by Means of 3D Printing for Intensification of Heat Transfer during Boiling, Optoelectr., Instrum. Data Process., 2019, vol. 55, no. 6, pp. 554–563; DOI:10.3103/S8756699019060049

    Article  ADS  Google Scholar 

  29. Zhukov, V.E., Mezentseva, N.N., and Pavlenko, A.N., Heat Transfer Enhancement on Surface Modified via Additive Manufacturing during Pool Boiling of Freon, J. Engin. Thermophys., 2022, vol. 31, no. 4, pp. 551–562; DOI:10.1134/S1810232822040014

    Article  Google Scholar 

  30. Sajjad, U., Sadeghianjahromi, A., Ali, H.M., and Wang, C.C., Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Enhancement Mechanisms, Int. Comm. Heat Mass Transfer, 2020, vol. 119, p. 104950; doi.org/10.1016/j.icheatmasstransfer.2020.104950.

    Article  Google Scholar 

  31. Li, X., Cole, I., and Tu, J., A Review of Nucleate Boiling on Nanoengineered Surfaces—The Nanostructures, Phenomena and Mechanisms, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 20–33; doi.org/10.1016/ j.ijheatmasstransfer.2019.06.069.

    Article  Google Scholar 

  32. Liang, G. and Mudawar, I., Review of Pool Boiling Enhancement by Surface Modification, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 892–933; doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.

    Article  Google Scholar 

  33. Dedov, A.V., A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer, Thermal Engin., 2019, vol. 66, no. 12, pp. 881–915; doi.org/10.1134/S0040601519120012.

    Article  ADS  Google Scholar 

  34. Pavlenko, A.N. and Kuznetsov, D.V. Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 526–562; doi.org/10.1134/S1810232821040019.

    Article  Google Scholar 

  35. Haran, K.S., Haran, K., Kalsi, S., Arndt, T., Karmaker, H., Badcock, R., Buckley, B., Haugan, T., Izumi, M., Loder, D., et al., High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap, Supercond. Sci. Technol. IOP Publ., 2017, vol. 30, no. 12; DOI:10.1088/1361-6668/aa833e

    Article  ADS  Google Scholar 

  36. Kovalev, K., Ivanov, N., Zhuravlev, S., Nekrasova, J., Rusanov, D., and Kuznetsov, G., Development and Testing of 10 kW Fully HTS Generator, J. Phys. Conf. Ser., 2020, vol. 1559, p. 012137; doi.org/10.1088/1742-6596/1559/1/012137.

    Article  Google Scholar 

  37. Zhuravlev, S., Zechikhin, B., Ivanov, N., and Nekrasova, J., Analytical Calculation of the Magnetic Field in Electrical Machines with HTS Excitation and Armature Windings, Mater. Res. Express., 2019, vol. 6, p. 076001; DOI:10.1088/2053-1591/ab18be

    Article  ADS  Google Scholar 

  38. Grilli, F., Benkel, T., Hanisch, J., Lao, M., Reis, T., Berberich, E., Wolfstadter, S., Schneider, C., Miller, P., Palmer, C., et al., Superconducting Motors for Aircraft Propulsion: The Advanced Superconducting Motor Experimental Demonstrator project, J. Phys. Conf. Ser, 2020, vol. 1590, p. 012051; DOI:10.1088/1742-6596/1590/1/012051

    Article  Google Scholar 

  39. Zanegin, S., Ivanov, N., Zubko, V., Kovalev, K., Shishov, I., Shishov, D., and Podguzov, V., Measurements and Analysis of AC Losses in HTS Windings of Electrical Machine for Different Operation Modes, Appl. Sci., 2021, vol. 11, p. 2741; doi.org/10.3390/app11062741.

    Article  Google Scholar 

  40. Messina, G., Yazdani-Asrami, M., Marignetti, F., and Della Corte, A., Characterization of HTS Coils for Superconducting Rotating Electric Machine Applications: Challenges, Material Selection, Winding Process, and Testing, IEEE Trans. Appl. Supercond., 2021, vol. 31, p. 2; DOI:10.1109/TASC.2020.3042829

    Article  Google Scholar 

  41. Kovalev, K., Ivanov, N., Zhuravlev, S., Rusanov, D., Kuznetsov, G., and Podguzov, V., Calculation, Design and Test Results of 3 kW Fully HTS Electric Machine, Physica C: Supercond. Its Appl., 2021, vol. 587, p. 1353892; doi.org/10.1016/j.physc.2021.1353892.

    Article  ADS  Google Scholar 

  42. Kovalev, K., et al., Superconducting System with 100 kW Output Power for Experimental Research, IEEE Transact. Appl. Supercond., 2022, vol. 32, no. 4, pp. 1–4; DOI:10.1109/TASC.2022.3147442

    Article  Google Scholar 

  43. Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii v polyakh massovykh sil razlichnoi intensivnosti (Heat Transfer during Boiling in Fields of Mass Forces of Different Intensities), Kyiv: Nauk. Dumka, 1988.

    Google Scholar 

  44. Zhukov, V.Y. and Lutcet M.O., Heat Transfer in a Liquid Nitrogen at High Centrifugal Acceleration Fields, Low Temperature and Cryogenic Refrigeration, NATO Science Series, 2003, vol. 99, pp. 221–240; doi.org/10.1007/978-94-010-0099-4_13.

  45. Sokolov, V.A., Sovremennye promyshlennye tsentrifugi (Modern Industrial Centrifuges), Moscow: Mashinostroenie, 1967.

    Google Scholar 

  46. Pavlenko, A.N., Zhukov, V.E., and Mezentseva, N.N., Heat Transfer and Critical Heat Flux on a Modified Surface during Boiling in Liquid Nitrogen, in Trudy XXXVIII Sibirskogo teplofizicheskogo seminara, posvyashchennogo 65-letiyu Instituta teplofiziki im. S.S. Kutateladze SO RAN, Novosibirsk, 2022, pp. 242–256; DOI:10.53954/9785604859551_242

  47. Novikov, I.I. and Borishanskii, V.M., Teoriya podobiya v termodinamike i teploperedache (Similarity Theory in Thermodynamics and Heat Transfer), Moscow: Atomizdat, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.E., Mezentseva, N.N. & Pavlenko, A.N. Enhancement of Heat Transfer during Nitrogen Boiling on Capillary-Porous Coatings under Conditions of Intense Mass Forces at High-Speed Rotation of Cryostat. J. Engin. Thermophys. 32, 181–195 (2023). https://doi.org/10.1134/S1810232823020017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020017

Navigation