Skip to main content
Log in

Assessment of Fin Shape and Height and Reservoir Elevation on the Performance of a TEG Cooling System

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Effect of the reservoir elevation, fin shape and height on the cooling performance of a heat sink equipped with a liquid thermosyphon system, for a thermoelectric generator (TEG) application is studied using numerical simulations. Three pin fin types, namely circular, circular sector and triangular shapes, with a staggered arrangement, are employed for the heat sink and performance of each type for a wide range of fin heights and two hydraulic diameters is demonstrated. It is found that the highest cooling performance is achieved, when the reservoir is placed at the same level as the heat sink. Hence, a more compact TEG-thermosyphon assembly, which requires less space, with better cooling efficiency, compared with traditional designs with the reservoir placed on top of the heat sink, is achieved. Simulations show that the heat sink with circular-sector fins has a better thermal efficiency at a wide range of fin heights, compared with the two other fin shapes, for the current application. It was also found that, with a suitable hydraulic diameter, circular-sector fins can provide reasonably low pressure drop for a wide range of fin heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Olsen, M., Warren, E., Parilla, P., Toberer, E., Kennedy, C., Snyder, G., Firdosy, S., Nesmith, B., Zakutayev, A., Goodrich, A., et al., A High-Temperature, High-Efficiency Solar Thermoelectric Generator Prototype, Energy Procedia, 2014, vol. 49, pp. 1460–1469.

    Article  Google Scholar 

  2. Muthu, G., Shanmugam, S., and Veerappan, A., Solar Parabolic Dish Thermoelectric Generator with Acrylic Cover, Energy Procedia, 2014, vol. 54, pp. 2–10.

    Article  Google Scholar 

  3. Singh, R., Tundee, S., and Akbarzadeh, A., Electric Power Generation from Solar Pond Using Combined Thermosyphon and Thermoelectric Modules, Solar Energy, 2011, vol. 85(2), pp. 371–378.

    Article  ADS  Google Scholar 

  4. Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., and Dai, S., Thermoelectric Generator (TEG) Technologies and Applications, Int. J. Thermofluids, 2012, vol. 9, p. 100063.

    Article  Google Scholar 

  5. Champier, D., Thermoelectric Generators: A Review of Applications, Energy Convers. Manag., 2017, vol. 140, pp. 167–181.

    Article  Google Scholar 

  6. Yu, S., Du, Q., Diao, H., Shu, G., and Jiao, K., Start-up Modes of Thermoelectric Generator Based on Vehicle Exhaust Waste Heat Recovery, Appl. Energy, 2015, vol. 138, pp. 276–290.

    Article  Google Scholar 

  7. Sajid, M., Hassan, I., and Rahman, A., An Overview of Cooling of Thermoelectric Devices, Renew. Sustain. Energy Rev., vol. 78, pp. 15–22.

    Article  Google Scholar 

  8. Borset, M.T., Wilhelmsen, O., Kjelstrup, S., and Burheim, O.S., Exploring the Potential for Waste Heat Recovery during Metal Casting with Thermoelectric Generators: On-Site Experiments and Mathematical Modeling, Energy, 2017, vol. 118, pp. 865–875.

    Article  Google Scholar 

  9. Savani, I., Waage, M.H., Borset, M., Kjelstrup, S., and Wilhelmsen, O., Harnessing Thermoelectric Power from Transient Heat Sources: Waste Heat Recovery from Silicon Production, Energy Convers. Manag., vol. 138, pp. 171–182.

    Article  Google Scholar 

  10. Tashtoush, B. and Qaseem, H., An Integrated Absorption Cooling Technology with Thermoelectric Generator Powered by Solar Energy, J. Thermal An. Calorim., 2021, pp. 1–13.

  11. Wang, L., Zaghari, B., Stuikys, A., Weddell, A., Grabham, N., White, N., and Harvey, T., A TEG-Excited Switched Reluctance Generator for Self-Powered Sensing in Next Generation Aircraft, AIAA SciTech, 2022.

  12. Chandan, D., Arunachala, U., and Varun, K., Improved Energy Conversion of a Photovoltaic Module-Thermoelectric Generator Hybrid System with Different Cooling Techniques: Indoor and Outdoor Performance Comparison, Int. J. Energy Res., 2022, vol. 46(7), pp. 9498–9520.

    Article  Google Scholar 

  13. Mirza, A.F., Mansoor, M., Zerbakht, K., Javed, M.Y., Zafar, M.H., and Khan, N.M., High-Efficiency Hybrid Pv-Teg System with Intelligent Control to Harvest Maximum Energy under Various Non-Static Operating Conditions, J. Cleaner Prod., 2021, vol. 320, p. 128643.

    Article  Google Scholar 

  14. Perumal, S., Samanta, M., Ghosh, T., Shenoy, U.S., Bohra, A.K., Bhattacharya, S., Singh, A., Waghmare, U.V., and Biswas, K., Realization of High Thermoelectric Figure of Merit in Gete by Complementary Co-Doping of Bi and In, Joule, 2019, vol. 3(10), pp. 2565–2580.

    Article  Google Scholar 

  15. Deasy, M., Baudin, N., O’Shaughnessy, S., and Robinson, A., Simulation-Driven Design of a Passive Liquid Cooling System for a Thermoelectric Generator, Appl. Energy, 2017, vol. 205, pp. 499–510.

    Article  Google Scholar 

  16. Li, Y., Wang, S., Zhao, Y., and Yue, L., Experimental Study on the Effect of Core Flow Heat Transfer Enhancement on the Performance of TEG, Energy Rep., 2022, vol. 8, pp. 575–580.

    Article  Google Scholar 

  17. Kim, S., Park, S., Kim, S., and Rhi, S.-H., A Thermoelectric Generator Using Engine Coolant for Light-Duty Internal Combustion Engine-Powered Vehicles, J. Electronic Mat., 2011, vol. 40(5), p. 812.

    Article  ADS  Google Scholar 

  18. Sheikh, R., Gholampour, S., Fallahsohi, H., Goodarzi, M., Taheri, M.M., and Bagheri, M., Improving the Efficiency of an Exhaust Thermoelectric Generator Based on Changes in the Baffle Distribution of the Heat Exchanger, J. Thermal An. Calorim., 2020, pp. 1–11.

  19. Remeli, M.F., Tan, L., Date, A., Singh, B., and Akbarzadeh, A., Simultaneous Power Generation and Heat Recovery Using a Heat Pipe Assisted Thermoelectric Generator System, Energy Convers. Manag., 2015, vol. 91, pp. 110–119.

    Article  Google Scholar 

  20. Mal, R., Prasad, R., and Vijay, V.K., Multi-Functionality Clean Biomass Cook-Stove for Off-Grid Areas, Proc. Saf. Envir. Protect., 2016, vol. 104, pp. 85–94.

    Article  Google Scholar 

  21. Pouransari, Z., Ranjbar, A.M., and Rasam, A., A New Configuration of the TEG-Thermosyphon with Similar Heatsink and Storage Tank Levels, Procs. of the 241th ISER Int. Conf., Int. J. Mech. Product. Engin., 2020, vol. 8, pp. 2092–2320.

    Google Scholar 

  22. Ewert, M.K., Terrestrial and Aerospace Solar Heat Pump and Refrigerator Development: Past, Present and Future, Solar Engin., 1998, pp. 375–382.

  23. Bensaada, M., Experimental Investigation of Thermal Effect on the Characteristic Behavior of Thermoelectric Generators: Applicable as a Power Source for Low Earth Orbit Satellites, J. Eng. Therm., 2019, vol. 28, no. 4, pp. 569–577.

    Article  Google Scholar 

  24. Codecasa, M.P., Fanciulli, C., Gaddi, R., Gomez-Paz, F., and Passaretti, F., Update on the Design and Development of a TEG Cogenerator Device Integrated into Self-Standing Gas Heaters, J. Electronic Mat., 2013, vol. 42, no. 7, pp. 2243–2248.

    Article  ADS  Google Scholar 

  25. Lertsatitthanakorn, C., Electrical Performance Analysis and Economic Evaluation of Combined Biomass Cook Stove Thermoelectric (Bite) Generator, Biores. Technol., 2007, vol. 98, no. 8, pp. 1670–1674.

    Article  Google Scholar 

  26. Elghool, A., Basrawi, F., Ibrahim, T.K., Habib, K., Ibrahim, H., and Idris, D.M.N.D., A Review on Heat Sink for Thermo-Electric Power Generation: Classifications and Parameters Affecting Performance, Energy Convers. Manag., 2017, vol. 134, pp. 260–277.

    Article  Google Scholar 

  27. Date, A., Date, A., Dixon, C., Singh, R., and Akbarzadeh, A., Theoretical and Experimental Estimation of Limiting Input Heat Flux for Thermoelectric Power Generators with Passive Cooling, Solar Energy, 2015, vol. 111, pp. 201–217.

    Article  ADS  Google Scholar 

  28. Ahmed, S., Mousa, M., and Hegazi, A., Performance Analysis of a Passively Cooled Thermoelectric Generator, Energy Conversi. Manag., 2018, vol. 173, pp. 399–411.

    Article  Google Scholar 

  29. Deasy, M., O’Shaughnessy, S., Archer, L., and Robinson, A., Electricity Generation from a Biomass Cookstove with Mppt Power Management and Passive Liquid Cooling, Energy Sust. Develop., 2018, vol. 43, pp. 162–172.

    Article  Google Scholar 

  30. Ranjbar, A.M., Pouransari, Z., and Siavashi, M., Improved Design of Heat Sink Including Porous Pin Fins with Different Arrangements, A Numerical Turbulent Flow and Heat Transfer Study, Appl. Thermal Engin., 2021, vol. 198, p. 117519.

    Article  Google Scholar 

  31. Rajagopal, K., Ruzicka, M., and Srinivasa, A., On the Oberbeck–Boussinesq Approximation, Math. Models Methods Appl. Sci., 1996, vol. 6, no. 8, vol. 1157–1167.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wan, Z. and Joshi, Y., Pressure Drop and Heat Transfer Characteristics of Pin Fin Enhanced Microgaps in Single Phase Microfluidic Cooling, Int. J. Heat Mass Transfer, 2017, vol. 115, pp. 115–126.

    Article  Google Scholar 

  33. Webb, R.L., Heat Exchanger Design Methodology for Electronic Heat Sinks, J. Heat Transfer, 2007, vol. 129, no. 7, pp. 899–901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Pouransari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouransari, Z., Ranjbar, A.M. Assessment of Fin Shape and Height and Reservoir Elevation on the Performance of a TEG Cooling System. J. Engin. Thermophys. 32, 242–255 (2023). https://doi.org/10.1134/S1810232823020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020054

Navigation