Skip to main content
Log in

Effects of Header Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Non-uniform flow distribution among the channels of a heat exchanger (HX) can adversely affect its thermo-hydraulic performance. In this research, various header designs for a plate-fin heat exchanger (PFHX) and a flow data acquisition system were constructed to study the water flow distribution among the channels of the PFHX. These different header configurations were installed at the entrance of the PFHX operating under different flow conditions to evaluate the impact of header structure on flow distribution within the HX and its thermal-hydraulic performance. The conventional header was found to cause severe flow maldistribution at the inlet of the PFHX. The Reynolds number based on channel flow and geometry was seen to significantly affect the flow distribution, which in turn drastically reduced its effectiveness. To improve the conventional header, new headers with different perforated plates were designed and built. Experimental results showed that an improved version of the header is very effective in mitigating the flow maldistribution in the PFHX and thereby enhancing its thermal performance. Engineering correlations relating the flow distribution non-uniformity, HX effectiveness, and the Reynolds number for different header designs were also developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

REFERENCES

  1. Wen, J., Huang, H., Li, H., Xu, G., and Fu, Y., Thermal and Hydraulic Performance of a Compact Plate Finned Tube Air-Fuel Heat Exchanger for Aero-Engine, Appl. Thermal Engin., 2017, vol. 126. pp. 920–928.

    Article  Google Scholar 

  2. Wrobel, R., Scholes, B., Hussein, A., Law, R., Mustaffar A., and Reay, D., A Metal Additively Manufactured (MAM) Heat Exchanger for Electric Motor Thermal Control on a High-Altitude Solar Aircraft—Experimental Characterisation, Thermal Sci. Engin. Progr., 2020, vol. 19, p. 100629.

    Article  Google Scholar 

  3. Wright, S.J., Dixon-Hardy, D.W., and Heggs, P.J., Aircraft Air Conditioning Heat Exchangers and Atmospheric Fouling, Thermal Sci. Engin. Progr., 2018, vol. 7, pp. 184–202.

    Article  Google Scholar 

  4. Musto, M., Bianco, N., Rotondo, G., Toscano, F., and Pezzella, G., A Simplified Methodology to Simulate a Heat Exchanger in an Aircraft’s Oil Cooler by Means of a Porous Media, Appl. Thermal Engin., vol. 94, 2016, pp. 836–845.

    Article  Google Scholar 

  5. Li, H., Huang, H., Xu, G., Wen, J., and Wu, H., Performance Analysis of a Novel Compact Air-Air Heat Exchanger for Aircraft Gas Turbine Engine Using LMTD Method, Appl. Thermal Engin., 2017, vol. 116, pp. 445–455.

    Article  Google Scholar 

  6. Missirlis, D., Yakinthos, K., Palikaras, A., Katheder, K., and Goulas, A., Experimental and Numerical Investigation of the Flow Field through a Heat Exchanger for Aero-Engine Applications, Int. J. Heat Fluid Flow, 2004, vol. 26, no. 3, pp. 440–458.

    Article  Google Scholar 

  7. Torii, K., Kwak, K.M., and Nishino, K., Heat Transfer Enhancement Accompanying Pressure-Loss Reduction with Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 18, pp. 3795–3801.

    Article  Google Scholar 

  8. Ranganayakulu, H., The Effects of Longitudinal Heat Conduction in Compact Plate-Fin and Tube-Fin Heat Exchangers Using a Finite Element Method, Int. J. Heat Mass Transfer, 1997, vol. 40, no. 6, pp. 1261–1277.

    Article  MATH  Google Scholar 

  9. Mueller, A.C. and Chiou, J.P., Review of Various Types of Flow Maldistribution in Heat Exchangers, Heat Transfer Engin., 1988, vol. 9, no. 2, pp. 36–50.

    Article  ADS  Google Scholar 

  10. Hossein, S. and Majid, H., Effect of Number of Plates on the Thermal Performance of a Plate Heat Exchanger with Considering Flow Maldistribution, J. Energy Storage, 2002, vol. 32, p. 101907.

    Google Scholar 

  11. Roberta, M., Benjamin, Z., Vikrant, A., Wiebke, B.M., and Brian, E.W., Performance of Heat Pumps Using Pure and Mixed Refrigerants with Maldistribution Effects in Plate Heat Exchanger Evaporators, Int. J. Refrig., 2019, vol. 104, pp. 390–403.

    Article  Google Scholar 

  12. Sun, H., Hu, H., Ding, G.L., Chen, H., Zhang, Z., Wu, C., and Wang, L., A General Distributed-Parameter Model for Thermal Performance of Cold Box with Parallel Plate-Fin Heat Exchangers Based on Graph Theory, Appl. Thermal Engin., 2010, vol. 148, pp. 478–490.

    Article  Google Scholar 

  13. Gu, L.D. and Min, J.C., Airside Thermal-Hydraulic Characteristics for Tube Bank Heat Exchangers Used to Cool Compressor Bleed Air in an Aero Engine—Sciencedirect, Appl. Thermal Engin., 2018, vol. 141, pp. 939–947.

    Article  Google Scholar 

  14. Nacke, R., Northcutt, B., and Mudawar, I., Theory and Experimental Validation of Cross-Flow Micro-Channel Heat Exchanger Module with Reference to High Mach Aircraft Gas Turbine Engines, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 5/6, pp. 1224–1235.

    Article  MATH  Google Scholar 

  15. Kallath, H., Kholi, F.K., Jin, Q., Ha, M.Y., Park, S.H., Kim, H., Chetwynd-Chatwin, J., and Min, J.K., Numerical Study of the Flow Uniformity Inside the High-Pressure Side Manifolds of a Cooled Cooling Air Heat Exchanger, Appl. Thermal Engin., 2021, vol. 189.

    Article  Google Scholar 

  16. Niroomand, R., Saidi, M.H., and Hannani, S.K., A Quasi-Three-Dimensional Thermal Model for Multi-Stream Plate Fin Heat Exchangers, Appl. Thermal Engin., vol. 157, published online 5 nov., 2019.

    Article  Google Scholar 

  17. Patrick, H., Pascal, F., Thomas, A., Sebastian, R., and Harald, K., A Transient Three-Dimensional Model for Thermo-Fluid Simulation of Cryogenic Plate-Fin Heat Exchangers, Appl. Thermal Engin., vol. 180, published online 2020.

    Article  Google Scholar 

  18. Pacio, J.C. and Dorao, C.A., A Study of the Effect of Flow Maldistribution on Heat Transfer Performance in Evaporators, Nucl. Engin. Design, 2010, vol. 240, no. 11, pp. 3868–3877.

    Article  Google Scholar 

  19. Li, J., Hu, H., and Zhang, Y., Experimental Investigation and Correlation Development for Two-Phase Pressure Drop Characteristics of Flow Boiling in Offset Strip Fin Channels, Int. J. Thermal Sci., vol. 160, published online 2021.

  20. Wu, J. and Wang, Y., Liquid Blockage and Flow Maldistribution of Two-Phase Flow in Two Parallel Thin Micro-Channels, Appl. Thermal Engin., 2021.

  21. Li, R., Liu, J., and Xu, X., Development and Validation of a Direct Passage Arrangement Method for Multistream Plate Fin Heat Exchangers, Appl. Thermal Engin., 2018, vol. 130, pp. 1266–1278.

    Article  Google Scholar 

  22. Wang, S., Li, Y., Wen, J., and Ma, Y., Experimental Investigation of Header Configuration on Two-Phase Flow Distribution in Plate-Fin Heat Exchanger, Int. Comm. Heat Mass Transfer, 2009, vol. 37, no. 2, pp. 116–120.

    Article  Google Scholar 

  23. Li, M., Luo, Y., Jiang, Y., Wei, W., and Wang, W., Experimental Research on Flow and Heat Transfer in Microchannel with Refrigerant HFO1234yf, J. Thermophys. Heat Transfer, published online: 21 Dec., 2020.

  24. Anjun, J. and Seungwook, B., Effects of Distributor Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2006, vol. 26, no. 4, pp. 019–025.

    Google Scholar 

  25. Hao, P. and Xiang, L., Optimal Design Approach for the Plate-Fin Heat Exchangers Using Neural Networks Cooperated with Genetic Algorithms, Appl. Thermal Engin., 2007, vol. 28, no. 5, pp. 642–650.

    Google Scholar 

  26. Leblay, P., Henry, J.F., Caron, D., Leducq, D., Fournaison, L., and Bontemps, A., Characterisation of the Hydraulic Maldistribution in a Heat Exchanger by Local Measurement of Convective Heat Transfer Coefficients Using Infrared Thermography, Int. J. Refrig., 2014, vol. 45, pp. 73–82.

    Article  Google Scholar 

  27. Ahmad, M., Berthoud, G., and Mercier, P., General Characteristics of Two-Phase Flow Distribution in a Compact Heat Exchanger, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 442–450.

    Article  Google Scholar 

  28. Choi Steve, H., Shin, S., and Cho Young, I., The Effect of Area Ratio on the Flow Distribution in Liquid Cooling Module Manifolds for Electronic Packaging, Int. J. Heat Mass Transfer, 1993, vol. 20, no. 5, pp. 607–617.

    Article  Google Scholar 

  29. Wen, J., Li, Y.Z., Wang, S., and Zhou, A., Experimental Investigation of Header Configuration Improvement in Plate-Fin Heat Exchanger, Appl. Thermal Engin., 2007, vol. 27, pp. 1761–1770.

    Article  Google Scholar 

  30. Kim, S., A Novel Design Method of the Dividing Header Configuration Using 3D Numerical Simulation for a Heat Exchanger with a Parallel Arrangement, Appl. Thermal Engin., 2019, vol. 159.

    Article  Google Scholar 

  31. Mario, P., Tsuguo, K., and Kenichiro, F., Optimization of Fin Topology for Heat Transfer within Lightweight Plate-Fin Heat Exchangers, J. Thermophys. Heat Transfer, published online: 18 March, 2021.

    Article  Google Scholar 

  32. Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Experimental Investigation of Two-Phase Flow Distribution in Plate-Fin Heat Exchangers, Chem. Engin. Res. Design, 2017, vol. 120, pp. 34–46.

    Article  Google Scholar 

  33. Wen, J. and Li, Y.Z., Study of Flow Distribution and Its Improvement on the Header of Plate-Fin Heat Exchanger, Cryogenics, 2004, vol. 44, no. 11, pp. 823–831.

    Article  ADS  Google Scholar 

  34. Wen, J., Li, Y.Z., Zhou, A., and Zhang, K., An Experimental and Numerical Investigation of Flow Patterns in the Entrance of Plate-Fin Heat Exchanger, Int. J. Heat Mass Transfer, 2005, vol. 49, no. 9, pp. 1667–1678.

    Article  Google Scholar 

  35. Zhang, Z., Li, Y.Z., and Xu, J., Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers, Chinese J. Chem. Engin., 2004, vol. 12, pp. 1–7.

    ADS  Google Scholar 

  36. Zhang, Z., Mehendale, S., Tian, J.J., and Li, Y.Z., Fluid Flow Distribution and Heat Transfer in Plate-Fin Heat Exchangers, Heat Transfer Engin., 2015, vol. 36, no. 9, pp. 806–819.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J.J., Wu, M.P., Zhang, Z. et al. Effects of Header Configuration on Flow Maldistribution in Plate-Fin Heat Exchangers. J. Engin. Thermophys. 32, 321–339 (2023). https://doi.org/10.1134/S1810232823020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020091

Navigation