Skip to main content
Log in

Influence of Jet Velocity on Critical Heat Flux during Two-Phase Microjet Cooling of Electronics with HFE-7100

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The influence of the average velocity of jet of HFE-7100 dielectric liquid on the heat transfer and the critical heat flux was experimentally studied with the use of an array of 36 submerged impinging microjets at a large initial subcooling. The heating surface was cooled in a slot-shaped channel with a gap of 1 mm for a distributed array of microjets with diameter of 174 \(\mu\)m. With the distributed array of microjets of dielectric liquid with low heat of vaporization and thermal conductivity, at an initial liquid subcooling of 38.2°C relative to the saturation temperature it was possible to obtain a critical heat flux of 237 W/cm2 at a jet velocity of 9.56 m/s, which corresponds to a heat release source power of 186 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Mudawar, I., Recent Advances in High-Flux, Two-Phase Thermal Management, J. Therm. Sci. Eng. Appl., 2013, vol. 5, no. 2, p. 021012; https://doi.org/10.1115/1.4023599.

    Article  Google Scholar 

  2. Fan, S. and Duan, F., A Review of Two-Phase Submerged Boiling in Thermal Management of Electronic Cooling, Int. J. Heat Mass Transfer, 2020, vol. 150, p. 119324; https://doi.org/10.1016/ j.ijheatmasstransfer.2020.119324.

    Article  Google Scholar 

  3. Kuznetsov, V.V. and Shamirzaev, A.S., The Influence of the Mass Flow Rate on the Critical Heat Flux during Subcooled Deionized Water Boiling in a Microchannel Cooling System, Tech. Phys. Lett., 2018, vol. 44, pp. 938–941; https://doi.org/10.1134/S1063785018100279.

    Article  ADS  Google Scholar 

  4. Lemanov, V.V., Pakhomov, M.A., Terekhov, V.I., and Travnicek, Z., Non-Stationary Flow and Heat Transfer in a Synthetic Confined Jet Impingement, Int. J. Therm. Sci., 2022, vol. 179, p. 107607; https://doi.org/ 10.1016/j.ijthermalsci.2022.107607.

    Article  Google Scholar 

  5. Minea, A.A. and Moldoveanu, M.G., Overview of Hybrid Nanofluids Development and Benefits, J. Eng. Therm., 2018, vol. 27, no. 4, pp. 507–514; https://doi.org/10.1134/S1810232818040124.

    Article  Google Scholar 

  6. Shamirzaev, A.S., Mordovskoi, A.S., and Kuznetsov, V.V., Heat Transfer during Flow Boiling of Water in Short Microchannel with High Aspect Ratio, J. Eng. Therm., 2021, vol. 30, pp. 200–206; https://doi.org/ 10.1134/S181023282102003X.

    Article  Google Scholar 

  7. Zeigarnik, Y.A., Privalov, N.P., and Klimov, A.I., Critical Heat Flux with Boiling of Subcooled Water in Rectangular Channels with One-Sided Supply of Heat, Thermal Eng., 1981, vol. 28, no. 1, pp. 40–43.

    Article  Google Scholar 

  8. Clark, M.D., Weibel, J.A., and Garimella, S.V., Identification of Nucleate Boiling as the Dominant Heat Transfer Mechanism during Confined Two-Phase Jet Impingement, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 1095–1101; https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.058.

    Article  Google Scholar 

  9. Rau, M.J. and Garimella, S.V., Local Two-Phase Heat Transfer from Arrays of Confined and Submerged Impinging Jets, Int. J. Heat Mass Transfer, 2013, vol. 67, pp. 487–498; https://doi.org/10.1016/ j.ijheatmasstransfer.2013.08.041.

    Article  Google Scholar 

  10. Rohsenow, W.M., A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids, Trans. ASME—J. Heat Transfer, 1952, vol. 74, pp. 969–975; https://doi.org/10.1115/1.4015984.

    Article  Google Scholar 

  11. Priarone, A., Effect of Surface Orientation on Nucleate Boiling and Critical Heat Flux of Dielectric Fluids, Int. J. Therm. Sci., 2005, vol. 44, no. 9, pp. 822–831; https://doi.org/10.1016/j.ijthermalsci.2005.02.014.

    Article  Google Scholar 

  12. Womac, D.J., Incropera, F.P., and Ramadhyani, S., Correlating Equations for Impingement Cooling of Small Heat Sources with Multiple Circular Liquid Jets, J. Heat Transfer, 1994, vol. 116, no. 2, pp. 482–486; https://doi.org/10.1115/1.2911423.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V., Shamirzaev, A.S. & Mordovskoi, A.S. Influence of Jet Velocity on Critical Heat Flux during Two-Phase Microjet Cooling of Electronics with HFE-7100. J. Engin. Thermophys. 32, 208–213 (2023). https://doi.org/10.1134/S1810232823020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823020030

Navigation