Skip to main content
Log in

A Study of the Motion of Four Linked Satellites Controlled Using Lorentz Forces

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper considers four satellites connected to each other by electrodynamic tethers, which are assumed to be rigid in the mathematical model of the system’s motion. In the Earth’s magnetic field, current-carrying conductors are affected by Lorentz forces, which are used to control the motion of the system’s center of mass and the angular motion. The paper presents an algorithm for calculating the magnitude of the current to stop the drift of the center of mass of a tetrahedral formation relative to the desired orbital reference frame in low Earth orbit and spin the system up to a constant angular velocity relative to the center of mass. A numerical study of the convergence time to achieve the required motion is carried out depending on the maximum possible current and initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Shirobokov, M.G. and Trofimov, S.P., Adaptive neural formation-keeping control for satellites in a low-earth orbit, Cosmic Res., 2021, vol. 59, no. 6, pp. 501–516. https://doi.org/10.1134/S0010952521060113

    Article  ADS  Google Scholar 

  2. Leonard, C.L., Formation keeping of spacecraft via differential drag, Master Thesis, Massachusetts Inst. Technol., 1986. http://hdl.handle.net/1721.1/13358.

  3. Mashtakov, Y., Ovchinnikov, M., Petrova, T., et al., Two-satellite formation flying control by cell-structured solar sail, Acta Astronaut., 2020, vol. 170, pp. 592–600. https://doi.org/10.1016/j.actaastro.2020.02.024

    Article  ADS  Google Scholar 

  4. Ivanov, D., Gondar, R., Monakhova, U., et al., Electromagnetic uncoordinated control of a ChipSats swarm using magnetorquers, Acta Astronaut., 2022, vol. 192, pp. 15–29. https://doi.org/10.1016/j.actaastro.2021.12.014

    Article  ADS  Google Scholar 

  5. Shestakov, S., Ivanov, D., and Ovchinnikov, M., Formation-flying momentum exchange control by separate mass, J. Guid. Control. Dyn., 2015, vol. 38, no. 8, pp. 1–10. https://doi.org/10.2514/1.G001137

    Article  Google Scholar 

  6. Peck, M.A., Streetman, B., Saaj, C.M., and Lappas, V., Spacecraft formation flying using Lorentz forces, J. Br. Interplanet. Soc., 2007, vol. 60, no. 7, pp. 263–267.

    ADS  Google Scholar 

  7. Peck, M.A., Prospects and challenges for Lorentz-augmented orbits, Collect. Tech. Papers, AIAA Guid. Navig. Control Conf., 2005, vol. 3, pp. 1631–1646. https://doi.org/10.2514/6.2005-5995

  8. Schaffer, L. and Burns, J.A., Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains, J. Geophys. Res. SP. Phys., 1994, vol. 99, no. A9, pp. 17211–17223. https://doi.org/10.1029/94JA01231

    Article  Google Scholar 

  9. Saaj, C.M., Lappas, V., Richie, D., et al., Electrostatic forces for satellite swarm navigation and reconfiguration, Final Report for Ariadna Study Id. AO 4919 05, ESA, 2006.

    Google Scholar 

  10. Liu, J., Gangqiang, L., Zhu, Z.H., et al., Automatic orbital maneuver for mega-constellations maintenance with electrodynamic tethers, Aerosp. Sci. Technol., 2020, vol. 105, p. 105910. https://doi.org/10.1016/j.ast.2020.105910

    Article  Google Scholar 

  11. Yang, Y.-W. and Cai, H., Extended time-delay autosynchronization method for libration control of electrodynamic tether using Lorentz force, Acta Astronaut., 2019, vol. 159, pp. 179–188. https://doi.org/10.1016/j.actaastro.2019.03.038

    Article  ADS  Google Scholar 

  12. Lu, H., Li, A., Wang, C., and Zabolotnov, Y., Stability analysis and motion control of spinning electrodynamic tether system during transition into spin, Acta Astronaut., 2019, vol. 177, pp. 871–881. https://doi.org/10.1016/j.actaastro.2019.11.032

    Article  ADS  Google Scholar 

  13. Voevodin, P.S. and Zabolotnov, Y.M., Analysis of the dynamics and choice of parameters of an electrodynamic space tether system in the thrust generation mode, Cosmic Res., 2020, vol. 58, no. 1, pp. 42–52. https://doi.org/10.1134/S0010952520010062

    Article  ADS  Google Scholar 

  14. Ohkawa, Y., Kawamoto, S., Okumura, T., et al., Review of KITE—electrodynamic tether experiment on the H-II transfer vehicle, Acta Astronaut., 2019, vol. 177, pp. 750–758. https://doi.org/10.1016/j.actaastro.2020.03.014

    Article  ADS  Google Scholar 

  15. Kalenova, V.I. and Morozov, V.M., Stabilization of satellite relative equilibrium using magnetic and Lorentzian moments, Cosmic Res., 2021, vol. 59, no. 5, pp. 343–356. https://doi.org/10.1134/S0010952521050051

    Article  ADS  Google Scholar 

  16. Alexandrov, A.Y. and Tikhonov, A.A., Electrodynamic control with distributed delay for AES stabilization in an equatorial orbit, Cosmic Res., 2022, vol. 60, no. 5, pp. 366–374. https://doi.org/10.1134/S0010952522040013

    Article  ADS  Google Scholar 

  17. Kalenova, V.I. and Morozov, V.M., Novel approach to attitude stabilization of satellite using geomagnetic Lorentz forces, Aerosp. Sci. Technol., 2020, vol. 106, no. 1, p. 106105. https://doi.org/10.1016/j.ast.2020.106105

    Article  Google Scholar 

  18. Guzmán, J.J. and Edery, A., Mission design for the mms tetrahedron formation, IEEE Aerosp. Conf. Proc., 2004, vol. 1, pp. 533–540. https://doi.org/10.1109/AERO.2004.1367637

  19. Shestakov, S., Ovchinnikov, M., and Mashtakov, Y., Analytical approach to construction of tetrahedral satellite formation, J. Guid. Control. Dyn., 2019, vol. 42, no. 12, pp. 2600–2614. https://doi.org/10.2514/1.G003913

    Article  ADS  Google Scholar 

  20. Guerman, A.D., Smirnov, G.V., Paglione, P., and Seabra, A.M.V., Stationary configurations of a tetrahedral tethered satellite formation, J. Guid. Control. Dyn., 2008, vol. 31, no. 2, pp. 424–428. https://doi.org/10.2514/1.31979

    Article  ADS  Google Scholar 

  21. Hill, G.W., Researches in the lunar theory, Am. J. Math., 1878, vol. 1, pp. 5–26.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ivanov, D., Monakhova, U., and Ovchinnikov, M., Nanosatellites swarm deployment using decentralized differential drag-based control with communicational constraints, Acta Astronaut., 2019, vol. 159, pp. 646–657. https://doi.org/10.1016/j.actaastro.2019.02.006

    Article  ADS  Google Scholar 

  23. Mashtakov, Y.V., Ovchinnikov, M.Y., and Tkachev, S.S., Study of the disturbances effect on small satellite route tracking accuracy, Acta Astronaut., 2016, vol. 129, pp. 22–31. https://doi.org/10.1016/j.actaastro.2016.08.028

    Article  ADS  Google Scholar 

  24. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to Stability Theory), Moscow: Nauka, 1967.

  25. Künzi, H.P. and Krelle, W., Nichtlineare Programmierung, Berlin: Springer, 1962.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Chernov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, K.S., Ivanov, D.S. A Study of the Motion of Four Linked Satellites Controlled Using Lorentz Forces. Cosmic Res 61, 339–351 (2023). https://doi.org/10.1134/S0010952523700296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700296

Navigation