Semin Respir Crit Care Med 2023; 44(05): 696-704
DOI: 10.1055/s-0043-1770064
Review Article

Pulmonary Function in Human Spaceflight

Jan Stepanek
1   Aerospace Medicine Program, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
,
Rebecca S. Blue
2   Aerospace Medicine Program Aerospace Medicine and Vestibular Research Laboratory (AMVRL), Mayo Clinic, Scottsdale, Arizona
,
Desmond Connolly
3   Human Performance, Air & Space Division, QinetiQ Plc, Farnborough, United Kingdom
› Author Affiliations

Abstract

Human spaceflight is entering a time of markedly increased activity fueled by collaboration between governmental and private industry entities. This has resulted in successful mission planning for destinations in low Earth orbit, lunar destinations (Artemis program, Gateway station) as well as exploration to Mars. The planned construction of additional commercial space stations will ensure continued low Earth orbit presence and destinations for science but also commercial spaceflight participants. The human in the journey to space is exposed to numerous environmental challenges including increased gravitational forces, microgravity, altered human physiology during adaptation to weightlessness in space, altered ambient pressure, as well as other important stressors contingent on the type of mission and destination. This chapter will cover clinically important aspects relevant to lung function in a normally proceeding mission; emergency scenarios such as decompression, fire, etc., will not be covered as these are beyond the scope of this review. To date, participation in commercial spaceflight by those with pre-existing chronic medical conditions is very limited, and hence, close collaboration between practicing pulmonary specialists and aerospace medicine specialists is of critical importance to guarantee safety, proper clinical management, and hence success in these important endeavors.



Publication History

Article published online:
17 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Stepanek J, Blue RS, Parazynski S. Space medicine in the era of civilian spaceflight. N Engl J Med 2019; 380 (11) 1053-1060
  • 2 Gillis DB, Hamilton DR. Estimating outcomes of astronauts with myocardial infarction in exploration class space missions. Aviat Space Environ Med 2012; 83 (02) 79-91
  • 3 Jerde EA. The Apollo program. In: Sample Return Missions. Elsevier; 2021: 9–36. Accessed May 26, 2023 at: https://linkinghub.elsevier.com/retrieve/pii/B9780128183304000021
  • 4 Seedhouse E. International Space Station Life Support System. In: Life Support Systems for Humans in Space. Cham: Springer International Publishing; 2020 151–79. Accessed May 26, 2023 at: http://link.springer.com/10.1007/978-3-030-52859-1_5
  • 5 Sherif, D. and Knox, J., “International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements,” SAE Technical Paper 2005;01:2892
  • 6 Jenkins DR. Dressing for Altitude: U.S. Aviation Pressure Suits–Wiley Post to Space Shuttle. Washington, DC: National Aeronautics and Space Administration; 2012
  • 7 Law J, Van Baalen M, Foy M. et al. Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med 2014; 56 (05) 477-483
  • 8 Frey MA, Sulzman FM, Oser H, Ruyters G. The effects of moderately elevated ambient carbon dioxide levels on human physiology and performance: a joint NASA-ESA-DARA study—. Aviat Space Environ Med 1998; 69 (03) 282-284
  • 9 James J, Lam C, Scully R, Meyers V, McCoy J. Lunar dust toxicity final report. 2014. Accessed May 26, 2023 at: https://humanresearchroadmap.nasa.gov/Gaps/gap.aspx?i=295
  • 10 Kerstman EL, Scheuring RA, Barnes MG, DeKorse TB, Saile LG. Space adaptation back pain: a retrospective study. Aviat Space Environ Med 2012; 83 (01) 2-7
  • 11 Buckey J. Effectively protecting astronauts from space motion sickness. Aviat Space Environ Med 2010; 81 (05) 522-524
  • 12 Banks R, Somers J, Chelette T, Wood R, Watson R. Human response to acceleration. In: Davis J, Stepanek J, Fogarty J, Blue R, eds. Fundamentals of Aerospace Medicine. Philadelphia: Wolters Kluwer; 2020
  • 13 Pollock RD, Gates SD, Storey JA, Radcliffe JJ, Stevenson AT. Indices of acceleration atelectasis and the effect of hypergravity duration on its development. Exp Physiol 2021; 106 (01) 18-27
  • 14 Pollock RD, Jolley CJ, Abid N. et al. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform 2021; 92 (08) 633-641
  • 15 Pollock RD, Gates SD, Radcliffe JJ, Stevenson AT. Indirect measurements of acceleration atelectasis and the role of inspired oxygen concentrations. Aerosp Med Hum Perform 2021; 92 (10) 780-785
  • 16 Smith TG, Pollock RD, Britton JK. et al. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform 2022; 93 (12) 830-839
  • 17 Glaister DH. The Effects of Gravity and Acceleration on the Lung. Slough, [London]: [Published for] the Advisory Group for Aerospace Research and Development [of] N.A.T.O. [by] Technivision Services; [Distributed by Technical Press; 1970
  • 18 Levy P, Jaeger E, Stone R, Doudna C. Clinical problems in aviation medicine: aeroatelectasis: a respiratory syndrome in aviators. Aerosp Med 1962; 33 (08) 938-944
  • 19 Haswell MS, Tacker Jr. WA, Balldin UI, Burton RR. Influence of inspired oxygen concentration on acceleration atelectasis. Aviat Space Environ Med 1986; 57 (05) 432-437
  • 20 Green I, Burgess B. An Investigation into the Major Factors Contributing to Post-Flight Chest Pain in Fighter Pilots. Farnborough, UK: RAF Institute of Aviation Medicine; 1962
  • 21 Lyons TJ, Marlowe BL, Michaud VJ, McGowan DJ. Assessment of the anti-G straining maneuver (AGSM) skill performance and reinforcement program. Aviat Space Environ Med 1997; 68 (04) 322-324
  • 22 Blue RS, Pattarini JM, Reyes DP. et al. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat Space Environ Med 2014; 85 (07) 721-729
  • 23 White JT, Morin LM. Anti-G straining maneuver incompatibility with tactical aircraft oxygen systems. Aviat Space Environ Med 1988; 59 (02) 176-177
  • 24 Akparibo IY, Anderson J, Chumbley E. Aerospace Gravitational Effects. StatPearls. Treasure Island, FL: StatPearls Publishing; 2022. Accessed May 26, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK430768/
  • 25 Fresnel E, Dray G, Pla S, Jean P, Belda G, Perrey S. Cerebral oxygenation responses to aerobatic flight. Aerosp Med Hum Perform 2021; 92 (10) 838-842
  • 26 Blue R. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Presented at the 88th Annual Scientific Meeting of the Aerospace Medical Association, Denver, CO; 2017
  • 27 Blue RS, Riccitello JM, Tizard J, Hamilton RJ, Vanderploeg JM. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat Space Environ Med 2012; 83 (10) 929-934
  • 28 Mackenzie I, Viirre E, Vanderploeg JM, Chilvers ER. Zero G in a patient with advanced amyotrophic lateral sclerosis. Lancet 2007; 370 (9587): 566
  • 29 Mulcahy RA, Blue RS, Vardiman JL, Mathers CH, Castleberry TL, Vanderploeg JM. Subject anxiety and psychological considerations for centrifuge-simulated suborbital spaceflight. Aviat Space Environ Med 2014; 85 (08) 847-851
  • 30 Blue RS, Bonato F, Seaton K. et al. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Aerosp Med Hum Perform 2017; 88 (07) 641-650
  • 31 Moore TP, Thornton WE. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med 1987; 58 (9 Pt 2): A91-A96
  • 32 Wantier M, Estenne M, Verbanck S, Prisk GK, Paiva M. Chest wall mechanics in sustained microgravity. J Appl Physiol 1998; 84 (06) 2060-2065
  • 33 Bryan AC, Milic-Emili J, Pengelly D. Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 1966; 21 (03) 778-784
  • 34 West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964; 19: 713-724
  • 35 Prisk GK, Guy HJ, Elliott AR, Deutschman III RA, West JB. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol 1993; 75 (01) 15-26
  • 36 Schneider V, Charles J, Conkin J, Prisk G. Cardiopulmonary system: aeromedical considerations. In: Nicogossian AE, Williams RS, Huntoon CL, Doarn C, Polk JD, Schneider VS, eds. Space Physiology and Medicine: From Evidence to Practice. New York: Springer; 2016
  • 37 Buckey J. Central venous pressure. In: Prisk GK, Paiva M, West JB, eds. Gravity and the Lung. CRC Press; 2001. Available Accessed May 26, 2023 at: https://www.taylorfrancis.com/books/9781420026702
  • 38 White RJ, Blomqvist CG. Central venous pressure and cardiac function during spaceflight. J Appl Physiol 1998; 85 (02) 738-746
  • 39 Videbaek R, Norsk P. Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 1997; 83 (06) 1862-1866
  • 40 Prisk GK, Elliott AR, Guy HJ, Kosonen JM, West JB. Pulmonary gas exchange and its determinants during sustained microgravity on Spacelabs SLS-1 and SLS-2. J Appl Physiol 1995; 79 (04) 1290-1298
  • 41 Elliott AR, Prisk GK, Guy HJ, West JB. Lung volumes during sustained microgravity on Spacelab SLS-1. J Appl Physiol 1994; 77 (04) 2005-2014
  • 42 Elliott AR, Prisk GK, Guy HJ, Kosonen JM, West JB. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1. J Appl Physiol 1996; 81 (01) 33-43
  • 43 Agostoni E, Gurtner G, Torri G, Rahn H. Respiratory mechanics during submersion and negative-pressure breathing. J Appl Physiol 1966; 21 (01) 251-258
  • 44 Guy HJ, Prisk GK, Elliott AR, Deutschman III RA, West JB. Inhomogeneity of pulmonary ventilation during sustained microgravity as determined by single-breath washouts. J Appl Physiol 1994; 76 (04) 1719-1729
  • 45 Prisk GK, Guy HJ, Elliott AR, West JB. Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 1994; 76 (04) 1730-1738
  • 46 Verbandt Y, Wantier M, Prisk GK, Paiva M. Ventilation-perfusion matching in long-term microgravity. J Appl Physiol 2000; 89 (06) 2407-2412
  • 47 Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol 2006; 101 (02) 439-447
  • 48 Verbanck S, Larsson H, Linnarsson D, Prisk GK, West JB, Paiva M. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J Appl Physiol 1997; 83 (03) 810-816
  • 49 Prisk G. Control of ventilation. In: Prisk GK, Paiva M, West JB, eds. Gravity and the Lung. CRC Press; 2001. Accessed May 26, 2023 at: https://www.taylorfrancis.com/books/9781420026702
  • 50 Prisk GK, Elliott AR, West JB. Sustained microgravity reduces the human ventilatory response to hypoxia but not to hypercapnia. J Appl Physiol 2000; 88 (04) 1421-1430
  • 51 Prisk GK. Microgravity and the respiratory system. Eur Respir J 2014; 43 (05) 1459-1471
  • 52 Moore Jr AD, Downs ME, Lee SMC, Feiveson AH, Knudsen P, Ploutz-Snyder L. Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol 2014; 117 (03) 231-238
  • 53 Prisk GK, Fine JM, Cooper TK, West JB. Lung function is unchanged in the 1 G environment following 6-months exposure to microgravity. Eur J Appl Physiol 2008; 103 (06) 617-623
  • 54 Elliott AR, Shea SA, Dijk DJ. et al. Microgravity reduces sleep-disordered breathing in humans. Am J Respir Crit Care Med 2001; 164 (03) 478-485
  • 55 Sá RC, Prisk GK, Paiva M. Microgravity alters respiratory abdominal and rib cage motion during sleep. J Appl Physiol 2009; 107 (05) 1406-1412
  • 56 Stepanek J, Connolly D, Pollock N. Atmosphere, Hypoxia and Decompression Stress. In: Davis J, Stepanek J, Fogarty J, Blue R, editors. Fundamentals of Aerospace Medicine. Philadelphia: Wolters Kluwer; 2020
  • 57 Balldin UI, Pilmanis AA, Webb JT. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli. Aviat Space Environ Med 2002; 73 (10) 996-999
  • 58 Zwirewich CV, Müller NL, Abboud RT, Lepawsky M. Noncardiogenic pulmonary edema caused by decompression sickness: rapid resolution following hyperbaric therapy. Radiology 1987; 163 (01) 81-82
  • 59 Connolly DM, Lee VM, D'Oyly TJ. Decompression sickness risk at 6553 m breathing two gas mixtures. Aviat Space Environ Med 2010; 81 (12) 1069-1077
  • 60 Chen C-W, Perng W-C, Li M-H, Yan H-C, Wu C-P. Hemorrhage from an enlarged emphysematous bulla during commercial air travel. Aviat Space Environ Med 2006; 77 (12) 1275-1277
  • 61 Pendergast DR, Senf C, Lundgren CEG. Is the rate of whole-body nitrogen elimination influenced by exercise?. Undersea Hyperb Med 2012; 39 (01) 595-604
  • 62 Conkin J, Norcross J, Abercromby A. Evidence report: risk of decompression sickness (DCS) [Internet]. 2016. Accessed May 26, 2023 at:: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150021491.pdf
  • 63 Thorsen E, Segadal K, Kambestad BK. Mechanisms of reduced pulmonary function after a saturation dive. Eur Respir J 1994; 7 (01) 4-10
  • 64 Prisk GK, Fine JM, Cooper TK, West JB. Pulmonary gas exchange is not impaired 24 h after extravehicular activity. J Appl Physiol 2005; 99 (06) 2233-2238
  • 65 Karlsson LL, Blogg SL, Lindholm P, Gennser M, Hemmingsson T, Linnarsson D. Venous gas emboli and exhaled nitric oxide with simulated and actual extravehicular activity. Respir Physiol Neurobiol 2009; 169 (suppl 1): S59-S62
  • 66 Norfleet W, Butler B. Decompression Sickness in Extravehicular Activities [Internet]. In: Prisk GK, Paiva M, West JB, eds. Gravity and the Lung. CRC Press; 2001. Available May 26, 2023 at: https://www.taylorfrancis.com/books/9781420026702
  • 67 Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform 2018; 89 (02) 108-114
  • 68 Edwards LM, Murray AJ, Tyler DJ. et al; Caudwell Xtreme Everest Research Group. The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition. PLoS One 2010; 5 (05) e10681
  • 69 Norcross J, Norsk P, Law J. et al. Effects of the 8 psia / 32% O2 atmosphere on the human in the spaceflight environment. Houston, TX: NASA Johnson Space Center; 2013
  • 70 Conkin J, Wessel III JH. Critique of the equivalent air altitude model. Aviat Space Environ Med 2008; 79 (10) 975-982
  • 71 Richard NA, Koehle MS. Differences in cardio-ventilatory responses to hypobaric and normobaric hypoxia: a review. Aviat Space Environ Med 2012; 83 (07) 677-684
  • 72 Imray C, Wright A, Subudhi A, Roach R. Acute mountain sickness: pathophysiology, prevention, and treatment. Prog Cardiovasc Dis 2010; 52 (06) 467-484
  • 73 Anderson PJ, Miller AD, O'Malley KA. et al. Incidence and symptoms of high altitude illness in south pole workers: Antarctic Study of Altitude Physiology (ASAP). Clin Med Insights Circ Respir Pulm Med 2011; 5: 27-35
  • 74 Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol 2009; 8 (02) 175-191
  • 75 Muhm JM, Signal TL, Rock PB. et al. Sleep at simulated 2438 m: effects on oxygenation, sleep quality, and postsleep performance. Aviat Space Environ Med 2009; 80 (08) 691-697
  • 76 Klokker M, Kharazmi A, Galbo H, Bygbjerg I, Pedersen BK. Influence of in vivo hypobaric hypoxia on function of lymphocytes, neutrocytes, natural killer cells, and cytokines. J Appl Physiol 1993; 74 (03) 1100-1106
  • 77 Mader TH, Gibson CR, Pass AF. et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 2011; 118 (10) 2058-2069
  • 78 Mader TH, Gibson CR, Pass AF. et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol 2013; 33 (03) 249-255
  • 79 Elliott JE, Nigam SM, Laurie SS. et al. Prevalence of left heart contrast in healthy, young, asymptomatic humans at rest breathing room air. Respir Physiol Neurobiol 2013; 188 (01) 71-78
  • 80 Lovering AT, Duke JW, Elliott JE. Intrapulmonary arteriovenous anastomoses in humans—response to exercise and the environment. J Physiol 2015; 593 (03) 507-520
  • 81 Kerut EK, Norfleet WT, Plotnick GD, Giles TD. Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol 2001; 38 (03) 613-623
  • 82 Ljubkovic M, Zanchi J, Breskovic T, Marinovic J, Lojpur M, Dujic Z. Determinants of arterial gas embolism after scuba diving. J Appl Physiol 2012; 112 (01) 91-95
  • 83 Mojadidi MK, Ruiz JC, Chertoff J. et al. Patent foramen ovale and hypoxemia. Cardiol Rev 2019; 27 (01) 34-40