Skip to main content
Log in

Theory Behind Quantum Error Correcting Codes: An Overview

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Quantum information processing is now a well-evolved field of study with roots to quantum physics that has significantly evolved from pioneering works over almost more than a century. Today, we are at a stage where elementary forms of quantum computers and communication systems are being built and deployed. In this paper, we begin with a historical background into quantum information theory and coding theory for both entanglement-unassisted and assisted quantum communication systems, motivating the need for quantum error correction in such systems. We then begin with the necessary mathematical preliminaries towards understanding the theory behind quantum error correction, central to the discussions within this article, starting from the binary case towards the non-binary generalization, using the rich framework of finite fields. We will introduce the stabilizer framework, build upon the Calderbank-Shor-Steane framework for binary quantum codes and generalize this to the non-binary case, yielding generalized CSS codes that are linear and additive. We will survey important families of quantum codes derived from well-known classical counterparts. Next, we provide an overview of the theory behind entanglement-assisted quantum ECCs along with encoding and syndrome computing architectures. We present a case study on how to construct efficient quantum Reed-Solomon codes that saturate the Singleton bound for the non-degenerate case. We will also show how positive coding rates can be realized using tensor product codes from two zero-rate entanglement-assisted CSS codes, an effect termed as the coding analog of superadditivity, useful for entanglement-assisted quantum communications. We discuss how quantum coded networks can be realized using cluster states and modified graph state codes. Last, we will motivate fault-tolerant quantum computation from the perspective of coding theory. We end the article with our perspectives on interesting open directions in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

Similar content being viewed by others

Notes

  1. The reader must note that this tunneling probability depends on both the potential barrier and the scale i.e., narrow vs. wide barriers. For example, in scanning tunneling microscopy, a probe tip is very close to a sample (typically, a fraction of a nm.). An electron with an energy above the work function of the sample is able to tunnel across this gap, creating a current in the probe as a function of the gap length. As the probe scans the surface of the sample, changes in the tunneling current can provide the needed information on the topography of the surface.

  2. In fact, in the absence of a perfect single photon source, the state-of-the-art practical QKD systems employ a weak coherent source with probabilistic emission of single photons, driven by Poissonian statistics.

  3. Quantum no-cloning theorem has an important bearing in quantum coding and communications since we cannot clone a quantum bit, unlike a classical bit that can be copied using registers and stored in flip-flops (memory elements). Quantum no-broadcasting theorem has an important bearing while dealing with relay and multicasting equivalents within a quantum setting, useful for quantum network information theory and coding.

  4. The reader must note that the failed node can be identified using quantum non-demolition experiments.

  5. Since the original work of Kitaev57, there has been several research works in the field of topological QECCs. We will not be listing all the related works here, and instead focus on major works on algebraic quantum ECCs.

  6. Construction of practical encoding and error correction circuits requires the knowledge of quantum gates, which could be transversal gates or controlled gates.

  7. RM codes are constructed using the concept of multivariate polynomials, and they are based on the idea of evaluating a polynomial at different points in a finite field to generate code words.

  8. The reader must note that quantum states are in fact rays in a Hilbert space since there is a global phase. In the projective Hilbert space when the phase is quotiented out, what remains is a normalized vector. For more details, the reader is referred to128.

  9. The Werner state \(\rho ^{AB}=\lambda \vert {\psi ^{-}}\rangle \langle {\psi ^{-}}\vert +(1-\lambda )\frac{\mathbb{I}}{4}\), where \(\vert {\psi ^{-}}\rangle =\frac{\vert {01}\rangle -\vert {10}\rangle }{\sqrt{(}2)}\) is a noisy version of the Bell state. By varying \(\lambda \), one can go from separable states to a pure Bell state.

  10. The reader must note that, in general, one could share a entangled qudit i.e., generalized d-level quantum states.

  11. The reader must note that the CSS code over qubits is a special case of this generalization.

  12. Minimal generators of a group are a set of generators that generate the group and none of the generators can be generated by other generators of the set. This is analogous to a basis for a vector space.

  13. The reader must note that unlike classical binary codes where the code coordinates can be flipped due to noise, we have phase flips in the quantum case, requiring stabilizers for correcting both these types and their combinations.

References

  1. Dirac PAM (1982) The principles of quantum mechanics, vol 27. Oxford University Press, Oxford

    Google Scholar 

  2. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Google Scholar 

  3. Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J 29(2):147–160

    Google Scholar 

  4. Lin S, Costello DJ (2004) Error control coding, 2nd edn. Prentice-Hall Inc, USA

    Google Scholar 

  5. Greene B (2007) The fabric of the cosmos: Space, time, and the texture of reality. Knopf Doubleday Publishing Group, NY, USA

    Google Scholar 

  6. Weinert F (2009) Davisson—Germer experiment. In: Compendium of Quantum Physics, pp. 150–152. Springer, Berlin, Heidelberg

  7. Slocombe L, Sacchi M, Al-Khalili J (2022) An open quantum systems approach to proton tunnelling in DNA. Commun Phys 5(1):109

    CAS  Google Scholar 

  8. Glauber RJ (1963) Coherent and incoherent states of the radiation field. Phys Rev 131(6):2766

    Google Scholar 

  9. Glauber RJ (1963) The quantum theory of optical coherence. Phys Rev 130(6):2529

    Google Scholar 

  10. Holevo AS (1998) Quantum coding theorems. Russ Math Surv 53:1295

    Google Scholar 

  11. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299:802–803

    CAS  Google Scholar 

  12. Di Franco C, Paternostro M (2013) A no-go result on the purification of quantum states. Nat Sci Rep 3(1):1387

    Google Scholar 

  13. Kumar Pati A, Braunstein SL (2000) Impossibility of deleting an unknown quantum state. Nature 404(6774):164–165

    Google Scholar 

  14. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67(6):661

    CAS  Google Scholar 

  15. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70(13):1895

    CAS  Google Scholar 

  16. Gottesman D, Chuang IL (1999) Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760):390–393

    CAS  Google Scholar 

  17. Wilde MM (2013) Quantum information theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139525343

    Book  Google Scholar 

  18. Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed-state entanglement and quantum error correction. Phys Rev A 54(5):3824

    CAS  Google Scholar 

  19. Schumacher B, Westmoreland MD (2001) Optimal signal ensembles. Phys Rev A 63(2):022308

    Google Scholar 

  20. Devetak I (2005) The private classical capacity and quantum capacity of a quantum channel. IEEE Trans Inf Theory 51(1):44–55

    Google Scholar 

  21. Cai N, Winter A, Yeung RW (2004) Quantum privacy and quantum wiretap channels. Probl Inf Transm 40(4):318–336

    Google Scholar 

  22. Horodecki M, Oppenheim J, Winter A (2005) Partial quantum information. Nature 436:673–676. https://doi.org/10.1038/nature03909

    Article  CAS  Google Scholar 

  23. Smith G, Yard J (2008) Quantum communication with zero-capacity channels. Science 321(5897):1812–1815

    CAS  Google Scholar 

  24. Abeyesinghe A, Hayden P (2003) Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys Rev A 68(6):062319

    Google Scholar 

  25. Hsieh M-H, Wilde MM (2010) Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans Inf Theory 56(9):4705–4730

    Google Scholar 

  26. Hsieh M-H, Devetak I, Winter A (2008) Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans Inf Theory 54(7):3078–3090

    Google Scholar 

  27. Yard J, Hayden P, Devetak I (2011) Quantum broadcast channels. IEEE Trans Inf Theory 57(10):7147–7162

    Google Scholar 

  28. Cui SX, Freedman MH, Sattath O, Stong R, Minton G (2016) Quantum max-flow/min-cut. J Math Phys 57(6):062206

    Google Scholar 

  29. Pirandola S (2019) End-to-end capacities of a quantum communication network. Commun Phys 2(1):51

    Google Scholar 

  30. Harney C, Fletcher AI, Pirandola S (2022) End-to-end capacities of hybrid quantum networks. Phys Rev Appl 18(1):014012

    CAS  Google Scholar 

  31. Calderbank AR, Shor PW (1996) Good quantum error-correcting codes exist. Phys Rev A 54(2):1098

    CAS  Google Scholar 

  32. Gottesman D (1997) Stabilizer codes and quantum error correction. Caltech. PhD thesis, Thesis. arXiv:quant-ph/9705052

  33. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77(5):793

    CAS  Google Scholar 

  34. Ashikhmin A, Knill E (2001) Nonbinary quantum stabilizer codes. IEEE Trans Inf Theory 47(7):3065–3072

    Google Scholar 

  35. Grassl M, Rötteler M, Beth T (2003) Efficient quantum circuits for non-qubit quantum error-correcting codes. Int J Found Comput Sci 14(05):757–775

    Google Scholar 

  36. Klappenecker A, Sarvepalli PK (2007) On subsystem codes beating the quantum hamming or singleton bound. Proc R Soc A Math Phys Eng Sci 463(2087):2887–2905

    Google Scholar 

  37. Nadkarni PJ, Garani SS (2021) Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes. IEEE Trans Quant Eng 2:1–22

    Google Scholar 

  38. Nadkarni PJ, Garani SS (2021) \(\mathbb{F}_{p}\)-linear and \(\mathbb{F}_{p^m}\)-linear qudit codes from dual-containing classical codes. IEEE Trans Quant Eng 2

  39. Nadkarni PJ, Garani SS (2021) Quantum error correction architecture for qudit stabilizer codes. Phys Rev A 103(4):042420

    CAS  Google Scholar 

  40. Brun T, Devetak I, Hsieh M-H (2006) Correcting quantum errors with entanglement. Science 314(5798):436–439

    CAS  Google Scholar 

  41. Lai C-Y, Brun TA (2013) Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys Rev A 88(1):012320

    Google Scholar 

  42. Wilde MM (2008) Quantum coding with entanglement. PhD thesis, University of Southern California, CA, USA

  43. Hsieh M-H, Brun TA, Devetak I (2009) Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys Rev A 79(3):032340

    Google Scholar 

  44. Hurley T, Hurley D, Hurley B. Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1

  45. Fan J, Li Y, Hsieh M-H, Chen H (2016) On quantum tensor product codes. arXiv preprint arXiv:1605.09598

  46. Guenda K, Jitman S, Gulliver TA (2017) Constructions of good entanglement-assisted quantum error correcting codes. Des Codes Crypt 86(1):121–136

    Google Scholar 

  47. Galindo C, Hernando F, Ruano D (2021) Entanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2. Quant Inf Process 20(5):158

    Google Scholar 

  48. Nadkarni PJ, Garani SS (2021) Entanglement-assisted Reed-Solomon codes over qudits: theory and architecture. Quant Inf Process 20:1–68

    Google Scholar 

  49. Grassl M, Rotteler M (2005) Quantum block and convolutional codes from self-orthogonal product codes. In: Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pp. 1018–1022 . IEEE

  50. Nadkarni PJ, Garani SS (2020) Coding analog of superadditivity using entanglement-assisted quantum tensor product codes over \(\mathbb{F} _{\rm p ^k}\). IEEE Trans Quant Eng 1:1–17

    Google Scholar 

  51. Kovalev AA, Pryadko LP (2012) Improved quantum hypergraph-product LDPC codes. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 348–352. IEEE

  52. Panteleev P, Kalachev G (2021) Quantum LDPC codes with almost linear minimum distance. IEEE Trans Inf Theory 68(1):213–229

    Google Scholar 

  53. Panteleev P, Kalachev G (2022) Asymptotically good quantum and locally testable classical LDPC codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp 375–388

  54. Piveteau C, Renes JM (2022) Quantum message-passing algorithm for optimal and efficient decoding. Quantum 6:784

    Google Scholar 

  55. Kitaev AY (2003) Fault-tolerant quantum computation by anyons. Ann Phys 303(1):2–30

    CAS  Google Scholar 

  56. Kitaev A (2006) Protected qubit based on a superconducting current mirror. arXiv preprint arXiv:cond-mat/0609441

  57. Kitaev A (2006) Anyons in an exactly solved model and beyond. Ann Phys 321(1):2–111

    CAS  Google Scholar 

  58. Dennis E, Kitaev A, Landahl A, Preskill J (2002) Topological quantum memory. J Math Phys 43(9):4452–4505

    Google Scholar 

  59. Bullock SS, Brennen GK (2007) Qudit surface codes and gauge theory with finite cyclic groups. J Phys A: Math Theor 40(13):3481

    Google Scholar 

  60. Bravyi S, Duclos-Cianci G, Poulin D, Suchara M (2012) Subsystem surface codes with three-qubit check operators. arXiv preprint arXiv:1207.1443

  61. Bravyi S, Hastings MB, Michalakis S (2010) Topological quantum order: stability under local perturbations. J Math Phys 51(9):093512

    Google Scholar 

  62. Fowler AG, Stephens AM, Groszkowski P (2009) High-threshold universal quantum computation on the surface code. Phys Rev A 80(5):052312

    Google Scholar 

  63. Fowler AG, Mariantoni M, Martinis JM, Cleland AN (2012) Surface codes: towards practical large-scale quantum computation. Phys Rev A 86(3):032324

    Google Scholar 

  64. Fowler AG, Whiteside AC, McInnes AL, Rabbani A (2012) Topological code autotune. Phys Rev X 2(4):041003

    Google Scholar 

  65. Fowler AG (2013) Minimum weight perfect matching of fault-tolerant topological quantum error correction in average \({\rm O}(1) \) parallel time. arXiv preprint arXiv:1307.1740

  66. Brown BJ, Nickerson NH, Browne DE (2016) Fault-tolerant error correction with the gauge color code. Nat Commun 7(1):12302

    CAS  Google Scholar 

  67. Brown BJ, Roberts S (2020) Universal fault-tolerant measurement-based quantum computation. Phys Rev Res 2(3):033305

    CAS  Google Scholar 

  68. Castelnovo C, Chamon C (2008) Topological order in a three-dimensional toric code at finite temperature. Phys Rev B 78(15):155120

    Google Scholar 

  69. Delfosse N (2014) Decoding color codes by projection onto surface codes. Phys Rev A 89(1):012317

    Google Scholar 

  70. Delfosse N, Nickerson NH (2021) Almost-linear time decoding algorithm for topological codes. Quantum 5:595

    Google Scholar 

  71. Kubica A, Delfosse N (2023) Efficient color code decoders in \( d \ge 2\) dimensions from toric code decoders. Quantum 7:929

    Google Scholar 

  72. Jochym-O’Connor T, Yoder TJ (2021) Four-dimensional toric code with non-clifford transversal gates. Phys Rev Res 3(1):013118

    Google Scholar 

  73. Terhal BM (2015) Quantum error correction for quantum memories. Rev Mod Phys 87(2):307

    Google Scholar 

  74. Breuckmann NP, Vuillot C, Campbell E, Krishna A, Terhal BM (2017) Hyperbolic and semi-hyperbolic surface codes for quantum storage. Quant Sci Technol 2(3):035007

    Google Scholar 

  75. Hayashi M (2007) Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A 76(4):040301

    Google Scholar 

  76. Lu H, Li Z-D, Yin X-F, Zhang R, Fang X-X, Li L, Liu N-L, Xu F, Chen Y-A, Pan J-W (2019) Experimental quantum network coding. npj Quant Inf 5(1):89

    Google Scholar 

  77. Raina A, Nadkarni PJ, Garani SS (2020) Recovery of quantum information from a node failure in a graph. Quant Inf Process 19:1–39

    Google Scholar 

  78. Lidar D, Brun TA (2013) Quantum error correction, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  79. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52:2493–2496. https://doi.org/10.1103/PhysRevA.52.R2493

    Article  Google Scholar 

  80. Gottesman D (1996) Class of quantum error-correcting codes saturating the quantum hamming bound. Phys Rev A 54(3):1862–1868. https://doi.org/10.1103/physreva.54.1862

    Article  CAS  Google Scholar 

  81. Knill E, Laflamme R (1997) Theory of quantum error-correcting codes. Phys Rev A 55:900–911. https://doi.org/10.1103/PhysRevA.55.900

    Article  CAS  Google Scholar 

  82. Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction via codes over GF(4). In: Proceedings of IEEE International Symposium on Information Theory

  83. Grassl M, Beth T, Pellizzari T (1997) Codes for the quantum erasure channel. Phys Rev A 56(1):33–38. https://doi.org/10.1103/physreva.56.33

    Article  CAS  Google Scholar 

  84. Grassl M, Geiselmann W, Beth T (1999) Quantum Reed-Solomon codes. In: Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC-13, pp. 231–244. Springer, Berlin

  85. Ketkar A, Klappenecker A, Kumar S, Sarvepalli PK (2006) Nonbinary stabilizer codes over finite fields. IEEE Trans Inf Theory 52(11):4892–4914. https://doi.org/10.1109/tit.2006.883612

    Article  Google Scholar 

  86. Varnava M, Browne DE, Rudolph T (2006) Loss tolerance in one-way quantum computation via counterfactual error correction. Phys Rev Lett 97(12). https://doi.org/10.1103/physrevlett.97.120501

  87. Aly SA (2008) Asymmetric quantum BCH codes. In: 2008 International Conference on Computer Engineering Systems, pp 157–162. https://doi.org/10.1109/ICCES.2008.4772987

  88. Giuliano L, Guardia Reginaldo P, Lavor C (2010) Nonbinary quantum Reed-Solomon codes. Int J Pure Appl Math 65(1)

  89. La Guardia GG (2012) Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quant Inf Process 11(2):591–604. https://doi.org/10.1007/s11128-011-0269-3

    Article  Google Scholar 

  90. Riguang L, Zhi M. Non-binary entanglement-assisted stabilizer quantum codes. http://arxiv.org/abs/1105.5872v1

  91. Luo L, Ma Z, Wei Z, Leng R (2016) Non-binary entanglement-assisted quantum stabilizer codes. Sci Chin Inf Sci 60(4). https://doi.org/10.1007/s11432-015-0932-y

  92. Fan J, Hsieh M, Chen H, Chen H, Li Y (2018) Construction and performance of quantum burst error correction codes for correlated errors. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp 2336–2340 . https://doi.org/10.1109/ISIT.2018.8437493

  93. Fan J, Li J, Wang J, Wei Z, Hsieh M-H (2021) Asymmetric quantum concatenated and tensor product codes with large Z-distances. IEEE Trans Commun 69(6):3971–3983

    Google Scholar 

  94. Nadkarni PJ, Garani SS (2017) Entanglement assisted binary quantum tensor product codes. In: 2017 IEEE Information Theory Workshop (ITW), pp 219–223. https://doi.org/10.1109/ITW.2017.8277961

  95. Nadkarni PJ, Raina A, Srinivasa SG (2017) Recovery of distributed quantum information using graph states from a node failure. In: 2017 IEEE Globecom Workshops (GC Wkshps). IEEE. https://doi.org/10.1109/glocomw.2017.8269075

  96. Nadkarni PJ, Raina A, Garani SS (2020) Modified graph-state codes for single-node recovery in quantum distributed storage. Phys Rev A 102(6):062430

    CAS  Google Scholar 

  97. Shao J, Zhou L, Sun Y (2018) Entanglement-assisted nonbinary quantum LDPC codes with finite field method. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE. https://doi.org/10.1109/iciea.2018.8397697

  98. Nadkarni PJ, Garani SS (2018) Encoding of quantum stabilizer codes over qudits with \(d=p^{k}\). In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6. https://doi.org/10.1109/GLOCOMW.2018.8644150

  99. Lai C, Ashikhmin A (2018) Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans Inf Theory 64(1):622–639. https://doi.org/10.1109/TIT.2017.2711601

    Article  Google Scholar 

  100. Nadkarni PJ, Garani SS (2019) Entanglement-assisted Quantum Reed-Solomon codes. In: IEEE Information Theory and Applications Workshop, San Diego, USA

  101. Galindo C, Hernando F, Matsumoto R, Ruano D (2019) Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant Inf Process 18(4). https://doi.org/10.1007/s11128-019-2234-5

  102. Nadkarni P (2021) Entanglement-assisted additive qudit stabilizer codes. PhD thesis, Indian Institute of Science, KA, India

  103. Grassl M. Entanglement-assisted quantum communication beating the quantum singleton bound. arXiv:2007.01249

  104. Nadkarni PJ, Garani SS (2021) Non-binary entanglement-assisted stabilizer codes. Quant Inf Process 20(8):256

    Google Scholar 

  105. Nadkarni PJ, Jayakumar P, Behera A, Garani SS (2023) Entanglement-assisted quantum Reed-Muller tensor product codes. arXiv:2303.08294

  106. Garcia-Frias J, Zhao Y (2005) Near-Shannon/Slepian-Wolf performance for unknown correlated sources over AWGN channels. IEEE Trans Commun 53(4):555–559

    Google Scholar 

  107. Arikan E (2009) Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theory 55(7):3051–3073

    Google Scholar 

  108. Liu L, Yan Y, Ling C, Wu X (2018) Construction of capacity-achieving lattice codes: polar lattices. IEEE Trans Commun 67(2):915–928

    Google Scholar 

  109. Richardson T, Urbanke R (2008) Modern Coding Theory. Cambridge University Press, UK . https://doi.org/10.1017/CBO9780511791338

  110. Muller DE (1954) Application of Boolean algebra to switching circuit design and to error detection. Transactions of the IRE Professional Group on Electronic Computers 3:6–12

    Google Scholar 

  111. Johannesson R, Zigangirov KS (2015) Fundamentals of convolutional coding. Wiley, Amsterdam

    Google Scholar 

  112. Forney GD (1973) The Viterbi algorithm. Proc IEEE 61(3):268–278

    Google Scholar 

  113. Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In: Proceedings of ICC’93-IEEE International Conference on Communications, vol. 2, pp. 1064–1070. IEEE

  114. Gallager R (1962) Low-density parity-check codes. IRE Transactions on Information Theory 8(1):21–28

    Google Scholar 

  115. Richardson TJ, Urbanke RL (2001) Efficient encoding of low-density parity-check codes. IEEE Trans Inf Theory 47(2):638–656

    Google Scholar 

  116. Garani SS, Dolecek L, Barry J, Sala F, Vasić B (2018) Signal processing and coding techniques for 2-D magnetic recording: An overview. Proc IEEE 106(2):286–318

    Google Scholar 

  117. Bae JH, Abotabl A, Lin H-P, Song K-B, Lee J (2019) An overview of channel coding for 5G NR cellular communications. APSIPA Transactions on Signal and Information Processing 8:17

    Google Scholar 

  118. Richardson T (1998) Error floors of LDPC codes. In: Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 41, pp. 1426–1435 (2003). The University;

  119. Chilappagari SK, Sankaranarayanan S, Vasic B (2006) Error floors of LDPC codes on the binary symmetric channel. In: 2006 IEEE International Conference on Communications, vol. 3, pp. 1089–1094. IEEE

  120. Vasic B, Kurtas EM (2004) Coding and signal processing for magnetic recording systems. CRC Press, New York

    Google Scholar 

  121. Hu X, Srinivasa SG, Weathers A, Barndt R (2011) Trapping set based LDPC code design and related circuits, systems, and methods. Google Patents. US Patent App. 12/889,706

  122. Blahut RE (2008) Algebraic codes on lines, planes, and curves: An engineering approach. Cambridge University Press, UK

    Google Scholar 

  123. Blaum M, Bruck J, Vardy A (1998) Interleaving schemes for multidimensional cluster errors. IEEE Trans Inf Theory 44(2):730–743

    Google Scholar 

  124. Sakata S (1988) Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J Symb Comput 5(3):321–337

    Google Scholar 

  125. Roy S, Srinivasa SG (2015) Two dimensional error-correcting codes using finite field Fourier transform. In: 2015 IEEE Information Theory Workshop-Fall (ITW), pp. 119–123. IEEE

  126. Mondal A, Garani SS (2021) Efficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applications. IEEE Trans Magn 57(5):1–14

    Google Scholar 

  127. Mondal A, Garani SS (2021) Efficient parallel decoding architecture for cluster erasure correcting 2-D LDPC codes for 2-D data storage. IEEE Trans Magn 57(12):1–16

    Google Scholar 

  128. Nielsen MA, Chuang IL (2011) Quantum Computation and Quantum Information: 10th, Anniversary. Cambridge University Press, USA

    Google Scholar 

  129. Wootters WK (2001) Entanglement of formation and concurrence. Quantum Inf Comput 1(1):27–44

    Google Scholar 

  130. Raussendorf R (2012) Key ideas in quantum error correction. Phil. Trans. of The Royal Society 370:4511–4565. https://doi.org/10.1098/rsta.2011.0494

    Article  Google Scholar 

  131. Aaronson S, Gottesman D (2004) Improved simulation of stabilizer circuits. Phys Rev A 70:052328. https://doi.org/10.1103/PhysRevA.70.052328

    Article  CAS  Google Scholar 

  132. Gottesman D (1998) The Heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006

  133. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202

    CAS  Google Scholar 

  134. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457

    CAS  Google Scholar 

  135. Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell’s theorem. Bell’s theorem, quantum theory and conceptions of the universe, 69–72

  136. Bruß D, Lewenstein M, SEN A, Sen U, D’ARIANO GM, Macchiavello C (2006) Dense coding with multipartite quantum states. International Journal of Quantum Information 4(03):415–428

    Google Scholar 

  137. Raina A, Srinivasa SG (2014) Quantum communication over bit flip channels using entangled bipartite and tripartite states. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1368–1375 . IEEE

  138. Ahlswede R, Cai N, Li S-Y, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Google Scholar 

  139. Leung D, Oppenheim J, Winter A (2010) Quantum network communication-the butterfly and beyond. IEEE Trans Inf Theory 56(7):3478–3490

    Google Scholar 

  140. Raina A (2019) Protocols for quantum information processing on graph states. PhD thesis, Indian Institute of Science, KA, India

  141. Nishimura H (2014) Quantum network coding and the current status of its studies. In: 2014 International Symposium on Information Theory and Its Applications, pp. 331–334. IEEE

  142. Kobayashi H, Gall F, Nishimura H, Rotteler M (2010) Perfect quantum network communication based on classical network coding. In: Proceedings of the International Symposium on Information Theory

  143. Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Quantum network coding. In: STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24, pp. 610–621. Springer

  144. Majumdar MG, Garani SS (2021) Quantum network recovery from multinode failure using network encoding with GHZ states on higher-order butterfly networks. Quantum Inf Process 20:1–7

    Google Scholar 

  145. Hayashi M (2016) Quantum Information Theory, 2nd edn. Springer, Japan

    Google Scholar 

  146. Maccone L (2007) Entropic information-disturbance tradeoff. Europhys Lett 77(4):40002

    Google Scholar 

  147. Wilde MM, Hayden P, Guha S (2012) Quantum trade-off coding for bosonic communication. Phys Rev A 86(6):062306

    Google Scholar 

  148. Wilde MM, Hayden P, Guha S (2012) Information trade-offs for optical quantum communication. Phys Rev Lett 108(14):140501

    Google Scholar 

  149. Hastings MB (2009) Superadditivity of communication capacity using entangled inputs. Nat Phys 5(4):255–257

    CAS  Google Scholar 

  150. Bennett CH, Shor PW, Smolin JA, Thapliyal AV (1999) Entanglement-assisted classical capacity of noisy quantum channels. Phys Rev Lett 83(15):3081

    CAS  Google Scholar 

  151. Bengtsson I, Zyczkowski K (2017) Geometry of Quantum States, 2nd edn. Cambridge University Press, USA . https://doi.org/10.1017/9781139207010

  152. Raveendran N, Nadkarni PJ, Garani SS, Vasić B (2017) Stochastic resonance decoding for quantum LDPC codes. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE

  153. Gheorghiu V, Looi SY, Griffiths RB (2010) Location of quantum information in additive graph codes. Physical Review A 81(3) . https://doi.org/10.1103/physreva.81.032326

  154. Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277

  155. Fowler AG (2011) Two-dimensional color-code quantum computation. Phys Rev A 83(4):042310

    Google Scholar 

  156. Wolf J (1965) On codes derivable from the tensor product of check matrices. IEEE Trans Inf Theory 11(2):281–284. https://doi.org/10.1109/tit.1965.1053771

    Article  Google Scholar 

  157. Chaichanavong P, Siegel PH (2006) Tensor-product parity codes: combination with constrained codes and application to perpendicular recording. IEEE Trans Magn 42(2):214–219. https://doi.org/10.1109/TMAG.2005.861747

    Article  Google Scholar 

  158. Chaichanavong P, Siegel PH (2006) Tensor-product parity code for magnetic recording. IEEE Trans Magn 42(2):350–352. https://doi.org/10.1109/TMAG.2005.861043

    Article  Google Scholar 

  159. Xu J, Chaichanavong P, Burd G, Wu Z (2011) Tensor product codes containing an iterative code. US8086945B1

  160. Yeo E, Yadav MK, Chaichanavong P, Burd G (2012) Multi-parity tensor-product code for data channel. US8321769B1,

  161. Alhussien H, Moon J (2010) An iteratively decodable tensor product code with application to data storage. IEEE J Sel Areas Commun 28(2):228–240. https://doi.org/10.1109/JSAC.2010.100212

    Article  Google Scholar 

  162. Gabrys R, Yaakobi E, Dolecek L (2013) Graded bit-error-correcting codes with applications to flash memory. IEEE Trans Inf Theory 59(4):2315–2327. https://doi.org/10.1109/tit.2012.2234207

    Article  Google Scholar 

  163. Kaynak MN, Khayat PR, Parthasarathy S (2014) Classification codes for soft information generation from hard flash reads. IEEE J Sel Areas Commun 32(5):892–899. https://doi.org/10.1109/jsac.2014.140509

    Article  Google Scholar 

  164. Huang P, Yaakobi E, Uchikawa H, Siegel PH (2016) Binary linear locally repairable codes. IEEE Trans Inf Theory 62(11):6268–6283. https://doi.org/10.1109/TIT.2016.2605119

    Article  Google Scholar 

  165. Wolf JK (2006) An introduction to tensor product codes and applications to digital storage systems. In: 2006 IEEE Information Theory Workshop - ITW ’06 Chengdu, pp. 6–10. https://doi.org/10.1109/ITW2.2006.323741

  166. Brassard G, Braunstein SL, Cleve R (1998) Teleportation as a quantum computation. Physica D 120(1–2):43–47. https://doi.org/10.1016/s0167-2789(98)00043-8

    Article  Google Scholar 

  167. Steane AM (1996) Multiple-particle interference and quantum error correction. Proc R Soc Lond A 452:2551–2577. https://doi.org/10.1098/rspa.1996.0166

    Article  Google Scholar 

  168. Aharonov D, Ben-Or M (1997) Fault-tolerant quantum computation with constant error. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97, pp. 176–188. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/258533.258579

  169. Bravyi S, Kitaev A (2005) Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys Rev A 71:022316. https://doi.org/10.1103/PhysRevA.71.022316

    Article  CAS  Google Scholar 

  170. Campbell ET, Anwar H, Browne DE (2012) Magic-state distillation in all prime dimensions using quantum Reed-Muller codes. Phys Rev X 2:041021. https://doi.org/10.1103/PhysRevX.2.041021

    Article  CAS  Google Scholar 

  171. Litinski D (2019) Magic state distillation: Not as costly as you think. Quantum 3:205. https://doi.org/10.22331/q-2019-12-02-205

    Article  Google Scholar 

  172. Bourassa JE, Alexander RN, Vasmer M, Patil A, Tzitrin I, Matsuura T, Su D, Baragiola BQ, Guha S, Dauphinais G, Sabapathy KK, Menicucci NC, Dhand I (2021) Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5:392. https://doi.org/10.22331/q-2021-02-04-392

    Article  Google Scholar 

  173. Bolt A, Duclos-Cianci G, Poulin D, Stace TM (2016) Foliated quantum error-correcting codes. Phys Rev Lett 117:070501. https://doi.org/10.1103/PhysRevLett.117.070501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Abhi K. Sharma, Sudhir K. Sahoo and Arun M. (Ph. D students from the Physical Nanomemories Signal and Information Processing Laboratory (PNSIL), IISc) for their help in contributing to reviewing fault-tolerant literature, compiling the list of references, and typesetting a few figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayan Srinivasa Garani.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garani, S.S., Nadkarni, P.J. & Raina, A. Theory Behind Quantum Error Correcting Codes: An Overview. J Indian Inst Sci 103, 449–495 (2023). https://doi.org/10.1007/s41745-023-00392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00392-7

Keywords

Navigation