skip to main content
research-article

emgr – EMpirical GRamian Framework Version 5.99

Published:19 September 2023Publication History
Skip Abstract Section

Abstract

Version 5.99 of the empirical Gramian framework – emgr – completes a development cycle which focused on parametric model order reduction of gas network models while preserving compatibility to the previous development for the application of combined state and parameter reduction for neuroscience network models. Second, new features concerning empirical Gramian types, perturbation design, and trajectory post-processing, as well as a Python version in addition to the default MATLAB / Octave implementation, have been added. This work summarizes these changes, particularly since emgr version 5.4, see Himpe, 2018 [Algorithms 11(7): 91], and gives recent as well as future applications, such as parameter identification in systems biology, based on the current feature set.

REFERENCES

  1. [1] Arjona M. A., Cisneros-Gonazález M., and Hernández C.. 2011. Parameter estimation of a synchronous generator using a sine cardinal perturbation and mixed stochastic-deterministic algorithms. IEEE Transactions on Industrial Electronics 58, 2 (2011), 486493. Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Avant T. and Morganson K. A.. 2019. Observability properties of object pose estimation. In Proceedings of the American Control Conference. 51345140. Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Babazadeh M.. 2022. Gramian-based vulnerability analysis of dynamic networks. IET Control Theory & Application 16, 6 (2022), 625637. Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Bianchin G. and Pasqualetti F.. 2020. Gramian-based optimization for the analysis and control of traffic networks. IEEE Transactions on Intelligent Transportation Systems 21, 7 (2020), 30133024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Blower G. and Newsham S. L.. 2021. Tau functions associated with linear systems. In Operator Theory, Functional Analysis and Applications. 6394. Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Breiten T. and Stykel T.. 2021. Balancing-related model reduction methods. In System- and Data-Driven Methods and Algorithms, Benner P., Grivet-Talocia S., Quarteroni A., Rozza G., Schilders W., and Silveira L. M. (Eds.). Model Order Reduction, Vol. 1. De Gruyter, Chapter 2, 1556. Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Falkenhagen U., Himpe C., Kloft C., Knoechel J., and Huisinga W.. 2022. Sample-based robust model order reduction for nonlinear systems biology models. In Proceedings in Applied Mathematics & Mechanics.Google ScholarGoogle Scholar
  8. [8] Glover K.. 1987. Model reduction: A tutorial on hankel-norm methods and lower bounds on \(L^2\) errors. IFAC Proceedings Volume (10th Triennial IFAC Congress on Automatic Control) 20, 5 (1987), 293298. Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Grundel S., Himpe C., and Saak J.. 2019. On empirical system gramians. Proc. Appl. Math. Mech. 19, 1 (2019), e201900006. Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Halvarsson B.. 2008. Comparison of some Gramian based interaction measures. In Proceedings of the 2008 IEEE International Symposium on Computer-Aided Control System Design. 128143. Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Harris C. R., Millman K. J., Walt S. J. van der, Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N. J., Kern R., Picus M., Hoyer S., Kerkwijk M. H. van, Brett M., Haldane A., Río J. Fernández del, Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke C., and Oliphant T. E.. 2020. Array programming with NumPy. Nature 585, 7825 (2020), 357362. Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Himpe C.. 2017. Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience. Ph. D. Dissertation. Westfälische Wilhelms-Universität Münster. . Sierke Verlag Göttingen, ISBN 9783868448818.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Himpe C.. 2018. emgr – the empirical gramian framework. Algorithms 11, 7 (2018), 91. Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Himpe C.. 2022. emgr – EMpirical GRamian Framework (Version 5.99). https://gramian.de. Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Himpe C., Grundel S., and Benner P.. 2021. Model order reduction for gas and energy networks. Journal of Mathematics in Industry 11 (2021), 13. Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Himpe C. and Ohlberger M.. 2013. A unified software framework for empirical gramians. J. Math. 2013 (2013), 16. Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Hyun N.-s. P., Murali V., and Verriest E. I.. 2017. Minimum sensitivity analysis for accurate open-loop controllers in linear systems using weighted gramians. In Proceedings of the IEEE 56th Annual Conference on Decision and Control. 114119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Kreindler E. and Sarachik P. E.. 1964. On the concepts of controllability and observability of linear systems. IEEE Trans. Autom. Control 9, 2 (1964), 129136. Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Krener A. and Ide K.. 2009. Measures of unobservability. In Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. 64016406. Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Lieberman C. E., Fidkowski K., Willcox K., and Waanders B. Van Bloemen. 2013. Hessian-based model reduction: Large-scale inversion and prediction. Int. J. Numer. Methods Fluids 71, 2 (2013), 135150. Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] MathWorks. (n. d.). Control System Toolbox. https://www.mathworks.com/products/control.htmlGoogle ScholarGoogle Scholar
  22. [22] Méndez-Blanco C. S. and Özkan L.. 2021. Local parameter identifiability of large-scale nonlinear models based on the output sensitivity covariance matrix. IFAC-PapersOnLine (16th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2021) 54, 3 (2021), 415420. Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Mitra D.. 1969. W matrix and the geometry of model equivalence and reduction. Proceedings of the Institution of Electrical Engineers 116, 6 (1969), 11011106. Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Raue A., Karlsson J., Saccomani M. P., and Jirstrand M.. 2014. Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics 30, 10 (2014), 14401448. Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Rong Z. and Michael N.. 2016. Detection and prediction of near-term state estimation degradation via online nonlinear observability analysis. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2833. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Schelfhout G. and Moor B. De. 1995. Time-domain weighted balanced truncation. In Proceedings of the 3rd European Control Conference. 14. http://ftp.esat.kuleuven.ac.be/SISTA/schelfhout/reports/tbalred.ps.ZGoogle ScholarGoogle Scholar
  27. [27] Sreeram V.. 2002. Frequency response error bounds for time-weighted balanced truncation. In Proceedings of the 41st IEEE Conference on Decision and Control. 33303331. Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Stigter J. D. and Joubert D.. 2021. Computing measures of identifiability, observability and controllability for a dynamic system model with the StrucID app. IFAC PapersOnLine (19th IFAC Symposium on System Identification) 54, 7 (2021), 138143. Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Sun C. and Hahn J.. (n. d.). Nonlinear Model Reduction Routines for MATLAB. https://homepages.rpi.edu/hahnj/Model_ReductionGoogle ScholarGoogle Scholar
  30. [30] Tolks C. and Ament C.. 2017. Model order reduction of glucose-insulin homeostasis using empirical gramians and balanced truncation. IFAC-PapersOnline (Proceedings of the 20th IFAC World Congress) 50, 1 (2017), 1473514740. Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Villaverde A. F., Barreiro A., and Papachristodoulou A.. 2016. Structural identifiability of dynamic systems biology models. PLOS Computational Biology 12, 10 (2016), e1005153. Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] contributors Wikipedia. 2022. Gram matrix — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Gram_matrix&oldid=1093332712. [Online; accessed 23-August-2022].Google ScholarGoogle Scholar

Index Terms

  1. emgr – EMpirical GRamian Framework Version 5.99

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 49, Issue 3
            September 2023
            200 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/3624972
            Issue’s Table of Contents

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 19 September 2023
            • Online AM: 20 July 2023
            • Accepted: 10 July 2023
            • Revised: 10 April 2023
            • Received: 4 September 2022
            Published in toms Volume 49, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)101
            • Downloads (Last 6 weeks)7

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Full Text

          View this article in Full Text.

          View Full Text