Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Mini-Review Article

Perturbations in Microbiota Composition as a Novel Mediator in Neuropsychiatric, Neurological and Mental Disorders: Preventive and Therapeutic Complementary Therapies to Balance the Change

Author(s): Majid Taati Moghadam, Andrés Alexis Ramírez-Coronel, Samaneh Darijani, Majid Reza Akbarizadeh, Mahin Naderifar, Simin Soltaninejad, Shahla Shahbazi, Amin Sadeghi Dousari, Ali Mojtahedi* and Reza Akhavan-Sigari

Volume 20, Issue 4, 2023

Published on: 01 August, 2023

Page: [213 - 223] Pages: 11

DOI: 10.2174/1567205020666230718160914

Price: $65

Abstract

Although microbiology and neurology are separate disciplines, they are linked to some infectious and neurological diseases. Today, microbiome is considered as one of the biomarkers of health by many researchers. This has led to the association of microbiome changes with many neurological diseases. The natural microbiota has many beneficial properties. If disrupted and altered, it can lead to irreversible complications and many neurological diseases. Therefore, according to previous studies, some preventive and therapeutic complementary therapies can prevent or restore microbiome dysbiosis and inflammation in the nervous system. With our current perception of the microbiological basis for different neurological disorders, both aspects of drug treatment and control of perturbations of the microbiome should be considered, and targeting them simultaneously will likely help to attain favorable results.

Keywords: Microbiome, neurological disorders, antibiotic therapy, probiotics, fecal microbiota transplant, mental disorders.

[1]
He J, Li Y, Cao Y, Xue J, Zhou X. The oral microbiome diversity and its relation to human diseases. Folia Microbiol (Praha) 2015; 60(1): 69-80.
[http://dx.doi.org/10.1007/s12223-014-0342-2] [PMID: 25147055]
[2]
Peñalver BB, Maki PM, Dowty SM, et al. Precision medicine in perinatal depression in light of the human microbiome. Psychopharmacology 2020; 237(4): 915-41.
[http://dx.doi.org/10.1007/s00213-019-05436-4] [PMID: 32065252]
[3]
Dorszewska J. Hurła M, Banaszek N, Kobylarek D, Piekut T, Kozubski W. From infection to inoculation: Expanding the microbial hypothesis of alzheimer’s disease. Curr Alzheimer Res 2022; 19(13): 849-53.
[http://dx.doi.org/10.2174/1567205020666230202155404] [PMID: 36740797]
[4]
Combs CK, Sohrabi M, Sahu B, Kaur H, Hasler WA, Prakash A. Gastrointestinal changes and Alzheimer’s disease. Curr Alzheimer Res 2022; 19(5): 335-50.
[http://dx.doi.org/10.2174/1567205019666220617121255] [PMID: 35718965]
[5]
Bahbah EI, Nafady MH, Sayed ZS, et al. The effect of gut microbe dysbiosis on the pathogenesis of Alzheimer’s disease (AD) and related conditions. Curr Alzheimer Res 2022; 19(4): 274-84.
[http://dx.doi.org/10.2174/1567205019666220419101205] [PMID: 35440296]
[6]
Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol 2020; 19(2): 179-94.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[7]
Luczynski P, Tramullas M, Viola M, et al. Microbiota regulates visceral pain in the mouse. eLife 2017; 6: e25887.
[http://dx.doi.org/10.7554/eLife.25887] [PMID: 28629511]
[8]
Luczynski P, Whelan SO, O’Sullivan C, et al. Adult microbiota‐deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci 2016; 44(9): 2654-66.
[http://dx.doi.org/10.1111/ejn.13291] [PMID: 27256072]
[9]
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016; 19(8): pyw020.
[http://dx.doi.org/10.1093/ijnp/pyw020] [PMID: 26912607]
[10]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[11]
Stilling RM, Moloney GM, Ryan FJ, et al. Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. eLife 2018; 7: e33070.
[http://dx.doi.org/10.7554/eLife.33070] [PMID: 29809134]
[12]
Erny D. Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[13]
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38: 1-12.
[http://dx.doi.org/10.1016/j.bbi.2013.12.015] [PMID: 24370461]
[14]
Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep 2018; 8(1): 1597.
[http://dx.doi.org/10.1038/s41598-018-19982-y] [PMID: 29371629]
[15]
Fox M, Knorr DA, Haptonstall KM. Alzheimer’s disease and symbiotic microbiota: an evolutionary medicine perspective. Ann N Y Acad Sci 2019; 1449(1): nyas.14129.
[http://dx.doi.org/10.1111/nyas.14129] [PMID: 31180143]
[16]
Tetz G. Editorial: Neurodegenerative diseases: From gut-brain axis to brain microbiome. Front Aging Neurosci 2022; 14: 1052805.
[http://dx.doi.org/10.3389/fnagi.2022.1052805] [PMID: 36313030]
[17]
Sureda A, Daglia M, Argüelles Castilla S, et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol Res 2020; 151: 104582.
[http://dx.doi.org/10.1016/j.phrs.2019.104582] [PMID: 31794871]
[18]
Choi TY, Choi YP, Koo JW. Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Exp Neurobiol 2020; 29(6): 403-16.
[http://dx.doi.org/10.5607/en20047] [PMID: 33139585]
[19]
Li Y, Hao Y, Fan F, Zhang B. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry 2018; 9: 669.
[http://dx.doi.org/10.3389/fpsyt.2018.00669] [PMID: 30568608]
[20]
Mihaila D, Donegan J, Barns S, et al. The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS One 2019; 14(6): e0218252.
[http://dx.doi.org/10.1371/journal.pone.0218252] [PMID: 31247001]
[21]
Shoemark DK, Allen SJ. The microbiome and disease: Reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis 2014; 43(3): 725-38.
[http://dx.doi.org/10.3233/JAD-141170] [PMID: 25125469]
[22]
Benichou Haziot C, Birak KS. Therapeutic potential of microbiota modulation in Alzheimer’s disease: A review of preclinical studies. J Alzheimers Dis Rep 2023; 2023: 1-17.
[http://dx.doi.org/10.3233/ADR-220097]
[23]
Borsom EM, Conn K, Keefe CR, et al. Predicting neurodegenerative disease using prepathology gut microbiota composition: a longitudinal study in mice modeling Alzheimer’s disease pathologies. Microbiol Spectr 2023; 11(2): e03458-22.
[http://dx.doi.org/10.1128/spectrum.03458-22] [PMID: 36877047]
[24]
Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[25]
Ghielen I, Rutten S, Boeschoten RE, et al. The effects of cognitive behavioral and mindfulness-based therapies on psychological distress in patients with multiple sclerosis, Parkinson’s disease and Huntington’s disease: Two meta-analyses. J Psychosom Res 2019; 122: 43-51.
[http://dx.doi.org/10.1016/j.jpsychores.2019.05.001] [PMID: 31126411]
[26]
Olsen I, Singhrao SK. Poor oral health and its neurological consequences: mechanisms of Porphyromonas gingivalis involvement in cognitive dysfunction. Curr Oral Health Rep 2019; 6(2): 120-9.
[http://dx.doi.org/10.1007/s40496-019-0212-8]
[27]
Verhoeff MC, Eikenboom D, Koutris M, et al. Parkinson’s disease and oral health: A systematic review. Arch Oral Biol 2023; 151: 105712.
[http://dx.doi.org/10.1016/j.archoralbio.2023.105712] [PMID: 37120970]
[28]
Larvin H, Gao C, Kang J, Aggarwal VR, Pavitt S, Wu J. The impact of study factors in the association of periodontal disease and cognitive disorders: systematic review and meta-analysis. Age Ageing 2023; 52(2): afad015.
[http://dx.doi.org/10.1093/ageing/afad015] [PMID: 36794714]
[29]
Spurthi S, Sridharan S, Hosadurga R, et al. Effectiveness of oral hygiene educational interventional programs on participants with Parkinson’s disease: a randomized controlled study. Quintessence Int 2023; 54(5): 428-37.
[30]
Bumb SS, Govindan CC, Kadtane SS, Chawla R, Gupta R, Khoriya SS. Association between cognitive decline and oral health status in the aging population: A 5-year observational study. GeroPsych 2021.
[31]
Na HS, Jung NY, Choi S. Analysis of oral microbiome in chronic periodontitis with Alzheimer’s disease: Pilot study. Res Square 2020; 2020: 1-20.
[32]
Taati Moghadam M, Amirmozafari N, Mojtahedi A, Bakhshayesh B, Shariati A, Masjedian Jazi F. Association of perturbation of oral bacterial with incident of Alzheimer’s disease: A pilot study. J Clin Lab Anal 2022; 36(7): e24483.
[http://dx.doi.org/10.1002/jcla.24483] [PMID: 35689551]
[33]
Fleury V, Zekeridou A, Lazarevic V, et al. Oral dysbiosis and inflammation in Parkinson’s disease. J Parkinsons Dis 2021; 11(2): 619-31.
[http://dx.doi.org/10.3233/JPD-202459] [PMID: 33646178]
[34]
Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37(11): 1885-95.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.024] [PMID: 22541937]
[35]
Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141(2): 599-609.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052]
[36]
Sandler RH, Finegold SM, Bolte ER, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15(7): 429-35.
[http://dx.doi.org/10.1177/088307380001500701] [PMID: 10921511]
[37]
Khan AN, Nabi F, Ajmal MR, et al. Moxifloxacin disrupts and attenuates Aβ42 fibril and oligomer formation: Plausibly repositioning an antibiotic as therapeutic against Alzheimer’s disease. ACS Chem Neurosci 2022; 13(16): 2529-39.
[http://dx.doi.org/10.1021/acschemneuro.2c00371] [PMID: 35930676]
[38]
Gomez-Murcia V, Carvalho K, Thiroux B, et al. Impact of chronic doxycycline treatment in the APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology 2022; 209: 108999.
[http://dx.doi.org/10.1016/j.neuropharm.2022.108999] [PMID: 35181375]
[39]
Kelsey JE, Neville C. The effects of the β-lactam antibiotic, ceftriaxone, on forepaw stepping and l-DOPA-induced dyskinesia in a rodent model of Parkinson’s disease. Psychopharmacology (Berl) 2014; 231(12): 2405-15.
[http://dx.doi.org/10.1007/s00213-013-3400-6] [PMID: 24402134]
[40]
Meng C, Feng S, Hao Z, Dong C, Liu H. Antibiotics exposure attenuates chronic unpredictable mild stress-induced anxiety-like and depression-like behavior. Psychoneuroendocrinology 2022; 136: 105620.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105620] [PMID: 34896741]
[41]
Kwon HK, Kim GC, Kim Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol 2013; 146(3): 217-27.
[http://dx.doi.org/10.1016/j.clim.2013.01.001] [PMID: 23416238]
[42]
Takata K, Kinoshita M, Okuno T, et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One 2011; 6(11): e27644.
[http://dx.doi.org/10.1371/journal.pone.0027644] [PMID: 22110705]
[43]
Guzen FP, Neta FI, de Souza FES, Batista AL, Pinheiro FI, Cobucci RN. Effects of supplementation with probiotics in experimental models of alzheimer’s disease: A systematic review of animal experiments. Curr Alzheimer Res 2022; 19(3): 188-201.
[http://dx.doi.org/10.2174/1567205019666220318092003] [PMID: 35306987]
[44]
Mehrabadi S, Sadr SS. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran Biomed J 2020; 24(4): 220-8.
[http://dx.doi.org/10.29252/ibj.24.4.220] [PMID: 32306720]
[45]
Tsao SP, Nurrahma BA, Kumar R, et al. Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced parkinson’s disease rats. Antioxidants 2021; 10(11): 1823.
[http://dx.doi.org/10.3390/antiox10111823] [PMID: 34829694]
[46]
Shi P, Dong W, Nian D, Chen Y, Liu X, Qu H, et al. Bifidobacterium alleviates guillain-barré syndrome by regulating the function of T17 cells. Int J Clin Exp Med 2018; 11(5): 4779-86.
[47]
Kouchaki E, Tamtaji OR, Salami M, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36(5): 1245-9.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015] [PMID: 27669638]
[48]
Tan FHP, Liu G, Lau SYA, et al. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef Microbes 2020; 11(1): 79-89.
[http://dx.doi.org/10.3920/BM2019.0086] [PMID: 32066253]
[49]
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[50]
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541-6.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[51]
Ohland CL, Kish L, Bell H, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 2013; 38(9): 1738-47.
[http://dx.doi.org/10.1016/j.psyneuen.2013.02.008] [PMID: 23566632]
[52]
Zupo R, Griseta C, Battista P, et al. Role of plant-based diet in late-life cognitive decline: Results from the Salus in Apulia Study. Nutr Neurosci 2022; 25(6): 1300-9.
[http://dx.doi.org/10.1080/1028415X.2020.1853416] [PMID: 33448914]
[53]
Park S, Shin BK. Intermittent fasting with a high-protein diet mitigated osteoarthritis symptoms by increasing lean body mass and reducing inflammation in osteoarthritic rats with Alzheimer’s disease-like dementia. Br J Nutr 2022; 127(1): 55-67.
[http://dx.doi.org/10.1017/S0007114521000829] [PMID: 33750486]
[54]
Ozawa M, Shipley M, Kivimaki M, Singh-Manoux A, Brunner EJ. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. Clin Nutr 2017; 36(2): 506-12.
[http://dx.doi.org/10.1016/j.clnu.2016.01.013] [PMID: 26874911]
[55]
Wang Y, Chen S, Tan J, et al. Tryptophan in the diet ameliorates motor deficits in a rotenone‐induced rat Parkinson’s disease model via activating the aromatic hydrocarbon receptor pathway. Brain Behav 2021; 11(8): e2226.
[http://dx.doi.org/10.1002/brb3.2226] [PMID: 34105899]
[56]
Saresella M, Mendozzi L, Rossi V, et al. Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: a pilot study. Front Immunol 2017; 8: 1391.
[http://dx.doi.org/10.3389/fimmu.2017.01391] [PMID: 29118761]
[57]
Liu W, He K, Wu D, et al. Natural dietary compound xanthohumol regulates the gut microbiota and its metabolic profile in a mouse model of Alzheimer’s disease. Molecules 2022; 27(4): 1281.
[http://dx.doi.org/10.3390/molecules27041281] [PMID: 35209070]
[58]
Kim DS, Zhang T, Park S. Protective effects of Forsythiae fructus and Cassiae semen water extract against memory deficits through the gut-microbiome-brain axis in an Alzheimer’s disease model. Pharm Biol 2022; 60(1): 212-24.
[http://dx.doi.org/10.1080/13880209.2022.2025860] [PMID: 35076339]
[59]
Lăcătușu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The mediterranean diet: From an environment-driven food culture to an emerging medical prescription. Int J Environ Res Public Health 2019; 16(6): 942.
[http://dx.doi.org/10.3390/ijerph16060942] [PMID: 30875998]
[60]
Rolls BJ, Dimeo KA, Shide DJ. Age-related impairments in the regulation of food intake. Am J Clin Nutr 1995; 62(5): 923-31.
[http://dx.doi.org/10.1093/ajcn/62.5.923] [PMID: 7572737]
[61]
Vercambre MN, Boutron-Ruault MC, Ritchie K, Clavel-Chapelon F, Berr C. Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr 2009; 102(3): 419-27.
[http://dx.doi.org/10.1017/S0007114508201959] [PMID: 19203415]
[62]
Kesse-Guyot E, Assmann KE, Andreeva VA, Ferry M, Hercberg S, Galan P. Consumption of dairy products and cognitive functioning: Findings from the SU.VI.MAX 2 study. J Nutr Health Aging 2016; 20(2): 128-37.
[http://dx.doi.org/10.1007/s12603-015-0593-x] [PMID: 26812508]
[63]
Le Bastard Q, Ward T, Sidiropoulos D, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 2018; 8(1): 6219.
[http://dx.doi.org/10.1038/s41598-018-24342-x] [PMID: 29670191]
[64]
Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol 2020; 10: 98.
[http://dx.doi.org/10.3389/fcimb.2020.00098] [PMID: 32266160]
[65]
Chernova VO, Terveer EM, van Prehn J, et al. Fecal microbiota transplantation for Parkinson’s disease using levodopa - carbidopa intestinal gel percutaneous endoscopic gastro-jejeunal tube. Parkinsonism Relat Disord 2023; 111: 105410.
[http://dx.doi.org/10.1016/j.parkreldis.2023.105410] [PMID: 37150070]
[66]
Matheson JAT, Holsinger RMD. The role of fecal microbiota transplantation in the treatment of neurodegenerative diseases: A review. Int J Mol Sci 2023; 24(2): 1001.
[http://dx.doi.org/10.3390/ijms24021001] [PMID: 36674517]
[67]
Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9(1): 189.
[http://dx.doi.org/10.1038/s41398-019-0525-3] [PMID: 31383855]
[68]
Segal A, Zlotnik Y, Moyal-Atias K, Abuhasira R, Ifergane G. Fecal microbiota transplant as a potential treatment for Parkinson’s disease - A case series. Clin Neurol Neurosurg 2021; 207: 106791.
[http://dx.doi.org/10.1016/j.clineuro.2021.106791] [PMID: 34237681]
[69]
Chen R, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 2019; 148: 104403.
[http://dx.doi.org/10.1016/j.phrs.2019.104403] [PMID: 31425750]
[70]
Li K, Wei S, Hu L, Yin X, Mai Y, Jiang C, et al. Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediators Inflamm 2020; 2020: 2058272.
[http://dx.doi.org/10.1155/2020/2058272]
[71]
He Z, Cui BT, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: The first report. World J Gastroenterol 2017; 23(19): 3565-8.
[http://dx.doi.org/10.3748/wjg.v23.i19.3565] [PMID: 28596693]
[72]
Zhao HJ, Luo X, Shi YC, et al. The efficacy of fecal microbiota transplantation for children with Tourette syndrome: a preliminary study. Front Psychiatry 2020; 11: 554441.
[http://dx.doi.org/10.3389/fpsyt.2020.554441] [PMID: 33424650]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy