Semin Respir Crit Care Med 2023; 44(05): 511-525
DOI: 10.1055/s-0043-1770340
Review Article

Ventilation Mechanics

Ramon Farré
1   Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
2   CIBER de Enfermedades Respiratorias, Madrid, Spain
3   Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
,
Daniel Navajas
1   Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
2   CIBER de Enfermedades Respiratorias, Madrid, Spain
4   Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
› Author Affiliations

Abstract

A fundamental task of the respiratory system is to operate as a mechanical gas pump ensuring that fresh air gets in close contact with the blood circulating through the lung capillaries to achieve O2 and CO2 exchange. To ventilate the lungs, the respiratory muscles provide the pressure required to overcome the viscoelastic mechanical load of the respiratory system. From a mechanical viewpoint, the most relevant respiratory system properties are the resistance of the airways (R aw), and the compliance of the lung tissue (C L) and chest wall (C CW). Both airflow and lung volume changes in spontaneous breathing and mechanical ventilation are determined by applying the fundamental mechanical laws to the relationships between the pressures inside the respiratory system (at the airway opening, alveolar, pleural, and muscular) and R aw, C L, and C CW. These relationships also are the basis of the different methods available to measure respiratory mechanics during spontaneous and artificial ventilation. Whereas a simple mechanical model (R aw, C L, and C CW) describes the basic understanding of ventilation mechanics, more complex concepts (nonlinearity, inhomogeneous ventilation, or viscoelasticity) should be employed to better describe and measure ventilation mechanics in patients.



Publication History

Article published online:
19 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Dynamics of Respiration. Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. Joseph R Rodarte, Kai Rehder. . First published: 01 January 2011
  • 2 Static Behavior of the Respiratory System. Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. Emilio Agostoni, Robert E Hyatt. . First published: 01 January 2011 Accessed June 5, 2023 at: https://doi-org.sire.ub.edu/10.1002/cphy.cp030309
  • 3 Ninane V, Rypens F, Yernault JC, De Troyer A. Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 1992; 146 (01) 16-21
  • 4 Yan S, Sinderby C, Bielen P, Beck J, Comtois N, Sliwinski P. Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J 2000; 16 (04) 684-690
  • 5 Wanger J, Clausen JL, Coates A. et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26 (03) 511-522
  • 6 Meneely GR, Kaltreider NL. The volume of the lung determined by helium dilution. description of the method and comparison with other procedures. J Clin Invest 1949; 28 (01) 129-139
  • 7 Rodarte JR, Hyatt RE, Westbrook PR. Determination of lung volume by single- and multiple-breath nitrogen washout. Am Rev Respir Dis 1976; 114 (01) 131-136
  • 8 Morris MG. The open circuit nitrogen washout technique for measuring the lung volume in infants: methodological aspects. Thorax 1999; 54 (09) 790-795
  • 9 Chiumello D, Cressoni M, Chierichetti M. et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 2008; 12 (06) R150 DOI: 10.1186/cc7139. Erratum in: Crit Care. 2009;13(2):405. PMID: 19046447; PMCID: PMC2646315
  • 10 Berger-Estilita J, Haenggi M, Ott D, Berger D. Accuracy of the end-expiratory lung volume measured by the modified nitrogen washout/washin technique: a bench study. J Transl Med 2021; 19 (01) 36
  • 11 Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society, European Respiratory Society/ American Thoracic Society. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J 2001; 17 (02) 302-312
  • 12 Rodenstein DO, Stănescu DC. Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic air-flow obstruction. Am Rev Respir Dis 1982; 126 (06) 1040-1044
  • 13 Ross JC, Copher DE, Teays JD, Lord TJ. Functional residual capacity in patients with pulmonary emphysema. A comparative study using gas dilution and plethysmographic techniques for measurement. Ann Intern Med 1962; 57: 18-28
  • 14 Lung Parenchymal Mechanics. . Volume 1. Issue 3. July 2011. Béla Suki, Dimitrije Stamenović, Rolf Hubmayr. Published online: 1 July 2011. https://doi.org/10.1002/cphy.c100033. Published online: 1 October 2011 https://doi.org/10.1002/cphy.c100025
  • 15 Milic-Emili J, Mead J, Turner JM, Glauser EM. Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 1964; 19: 207-211
  • 16 Pasticci I, Cadringher P, Giosa L. et al. Determinants of the esophageal-pleural pressure relationship in humans. J Appl Physiol 2020; 128 (01) 78-86
  • 17 Zielinska-Krawczyk M, Krenke R, Grabczak EM, Light RW. Pleural manometry-historical background, rationale for use and methods of measurement. Respir Med 2018; 136: 21-28
  • 18 Jiang J, Su L, Cheng W. et al. The calibration of esophageal pressure by proper esophageal balloon filling volume: a clinical study. Front Med (Lausanne) 2022; 9: 986982
  • 19 Lung Mechanics in Disease Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. N. B. Pride, Peter T. Macklem. Published online: 1 January 2011 https://doi.org/10.1002/cphy.cp030337
  • 20 Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The role of pulmonary surfactants in the treatment of acute respiratory distress syndrome in COVID-19. Front Pharmacol 2021; 12: 698905
  • 21 Hentschel R, Bohlin K, van Kaam A, Fuchs H, Danhaive O. Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res 2020; 88 (02) 176-183
  • 22 Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30 (162) 210077
  • 23 Härtel C, Glaser K, Speer CP. The miracles of surfactant: less invasive surfactant administration, nebulization, and carrier of topical drugs. Neonatology 2021; 118 (02) 225-234
  • 24 Passive Mechanical Properties of the Chest Wall. Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. Jeffrey C Smith, Stephen H Loring. . Published online: 1 January 2011. Accessed June 5, 2023 at: https://doi.org/10.1002/cphy.cp030325
  • 25 Papandrinopoulou D, Tzouda V, Tsoukalas G. Lung compliance and chronic obstructive pulmonary disease. Pulm Med 2012; 2012: 542769
  • 26 Sansores RH, Ramirez-Venegas A, Pérez-Padilla R. et al. Correlation between pulmonary fibrosis and the lung pressure-volume curve. Lung 1996; 174 (05) 315-323
  • 27 Nava S, Rubini F. Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis. Thorax 1999; 54 (05) 390-395
  • 28 Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 2018; 27 (147): 170062
  • 29 Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996; 109 (01) 144-151
  • 30 Redding G, Song K, Inscore S, Effmann E, Campbell R. Lung function asymmetry in children with congenital and infantile scoliosis. Spine J 2008; 8 (04) 639-644
  • 31 Kaminsky DA. What does airway resistance tell us about lung function?. Respir Care 2012; 57 (01) 85-96 , discussion 96–99
  • 32 Kaminsky DA, Cockcroft DW, Davis B. Respiratory system dynamics. Semin Respir Crit Care Med 2023;44(05):
  • 33 Briscoe WA, Dubois AB. The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 1958; 37 (09) 1279-1285
  • 34 Bossé Y, Riesenfeld EP, Paré PD, Irvin CG. It's not all smooth muscle: non-smooth-muscle elements in control of resistance to airflow. Annu Rev Physiol 2010; 72: 437-462
  • 35 Bara I, Ozier A, Tunon de Lara JM, Marthan R, Berger P. Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur Respir J 2010; 36 (05) 1174-1184
  • 36 Tattersfield AE, Keeping IM. Assessing change in airway calibre–measurement of airway resistance. Br J Clin Pharmacol 1979; 8 (04) 307-319
  • 37 Kraemer R, Smith HJ, Matthys H. Normative reference equations of airway dynamics assessed by whole-body plethysmography during spontaneous breathing evaluated in infants, children, and adults. Physiol Rep 2021; 9 (17) e15027
  • 38 Pressure-Flow Relationships in the Lungs. Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. Roland H. Ingram Jr., T. J. Pedley. Published online: 1 January 2011. Accessed June 5, 2023 at: https://doi.org/10.1002/cphy.cp030318
  • 39 Principles of Measurement: Applications to Pressure, Volume, and Flow. Supplement 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. James P. Butler, David E. Leith, Andrew C. Jackson. First published: 01 January 2011. Accessed June 5, 2023 at: https://doi-org.sire.ub.edu/10.1002/cphy.cp030302
  • 40 Laghi F, Tobin MJ. 2013 Chapter 4. Indications for mechanical ventilation. Tobin M.J.(Ed.), Principles and Practice of Mechanical Ventilation, 3e. McGraw Hill. Accessed June 5, 2023 at: https://accessmedicine.mhmedical.com/content.aspx?bookid=520&sectionid=41692241
  • 41 Chatburn RL. 2013. Chapter 2. Classification of mechanical ventilators and modes of ventilation. In: Tobin MJ. ed. Principles and Practice of Mechanical Ventilation. 3rd ed. McGraw Hill
  • 42 Holets SR, Hubmayr RD. 2013. Chapter 5. Setting the ventilator. In: Tobin MJ. ed. Principles and Practice of Mechanical Ventilation. 3rd ed. New York, NY: McGraw Hill;
  • 43 Navalesi P, Maggiore S. 2013 Chapter 10. positive end-expiratory pressure. Tobin M.J.(Ed.), Principles and Practice of Mechanical Ventilation, 3e. McGraw Hill. Accessed June 5, 2023 at: https://accessmedicine.mhmedical.com/content.aspx?bookid=520&sectionid=41692248
  • 44 Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care 2014; 59 (11) 1773-1794
  • 45 Bates JH, Baconnier P, Milic-Emili J. A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 1988; 64 (05) 2204-2214
  • 46 Lucangelo U, Bernabé F, Blanch L. Respiratory mechanics derived from signals in the ventilator circuit. Respir Care 2005; 50 (01) 55-65 , discussion 65–67
  • 47 Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 1995; 152 (02) 531-537
  • 48 Radics BL, Makan G, Coppens T. et al. Effect of nasal airway nonlinearities on oscillometric resistance measurements in infants. J Appl Physiol 2020; 129 (03) 591-598
  • 49 Beck KC, Hyatt RE, Mpougas P, Scanlon PD. Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. J Appl Physiol 1999; 86 (04) 1388-1395
  • 50 Lorino AM, Lofaso F, Abi-Nader F. et al. Nasal airflow resistance measurement: forced oscillation technique versus posterior rhinomanometry. Eur Respir J 1998; 11 (03) 720-725
  • 51 Peslin R, Rotger M, Farré R, Navajas D. Assessment of respiratory pressure-volume nonlinearity in rabbits during mechanical ventilation. J Appl Physiol 1996; 80 (05) 1637-1648
  • 52 Shi L, Herrmann J, Bou Jawde S, Bates JHT, Nia HT, Suki B. Modeling the influence of gravity and the mechanical properties of elastin and collagen fibers on alveolar and lung pressure-volume curves. Sci Rep 2022; 12 (01) 12280
  • 53 Bigler AH, Renzetti Jr AD, Watanabe S, Begin R, Clark J. Regional lung expansion and vertical pleural pressure gradients in normal human subjects. Bull Eur Physiopathol Respir 1979; 15 (05) 773-788
  • 54 Lai-Fook SJ, Rodarte JR. Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol 1991; 70 (03) 967-978
  • 55 Similowski T, Bates JH. Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology?. Eur Respir J 1991; 4 (03) 353-358
  • 56 Similowski T, Levy P, Corbeil C. et al. Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 1989; 67 (06) 2219-2229
  • 57 Lorino AM, Lorino H, Harf A. A synthesis of the Otis, Mead, and Mount mechanical respiratory models. Respir Physiol 1994; 97 (02) 123-133
  • 58 Lorino AM, Harf A. Techniques for measuring respiratory mechanics: an analytic approach with a viscoelastic model. J Appl Physiol 1993; 74 (05) 2373-2379
  • 59 Santini A, Mauri T, Dalla Corte F, Spinelli E, Pesenti A. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Crit Care 2019; 23 (01) 369
  • 60 Chi Y, Zhao Z, Frerichs I, Long Y, He H. Prevalence and prognosis of respiratory pendelluft phenomenon in mechanically ventilated ICU patients with acute respiratory failure: a retrospective cohort study. Ann Intensive Care 2022; 12 (01) 22
  • 61 Tsuzaki K, Hales CA, Strieder DJ, Venegas JG. Regional lung mechanics and gas transport in lungs with inhomogeneous compliance. J Appl Physiol 1993; 75 (01) 206-216
  • 62 Guérin C, Bayat S, Noury N. et al. Regional lung viscoelastic properties in supine and prone position in a porcine model of acute respiratory distress syndrome. J Appl Physiol 2021; 131 (01) 15-25
  • 63 D'Angelo E, Calderini E, Tavola M, Pecchiari M. Standard and viscoelastic mechanical properties of respiratory system compartments in dogs: Effect of volume, posture, and shape. Respir Physiol Neurobiol 2019; 261: 31-39
  • 64 Suki B, Bates JH. Lung tissue mechanics as an emergent phenomenon. J Appl Physiol 2011; 110 (04) 1111-1118
  • 65 Ganzert S, Möller K, Steinmann D, Schumann S, Guttmann J. Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit Care 2009; 13 (06) R199
  • 66 Navajas D, Farré R, Canet J, Rotger M, Sanchis J. Respiratory input impedance in anesthetized paralyzed patients. J Appl Physiol 1990; 69 (04) 1372-1379
  • 67 Otis Jr DR, Petak F, Hantos Z, Fredberg JJ, Kamm RD. Airway closure and reopening assessed by the alveolar capsule oscillation technique. J Appl Physiol 1996; 80 (06) 2077-2084
  • 68 Rotger M, Farré R, Navajas D, Peslin R. Respiratory input impedance up to 256  Hz in healthy humans breathing foreign gases. J Appl Physiol 1993; 75 (01) 307-320