Skip to main content
Log in

CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome

  • Research
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccβA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, β-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccβA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplemental files.

References

  • Bagenal TB (1971) The interrelation of the size of fish eggs, the date of spawning and the production cycle. J Fish Biol 3(2):207–219

    Article  Google Scholar 

  • Bart AN, Dunham RA (1996) Effects of sperm concentration and egg number on fertilization efficiency with channel catfish (Ictalurus punctatus) eggs and blue catfish (I. furcatus) spermatozoa. Theriogenology 45(3):673–682

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Stern AH, Gochfeld M (2005) Mercury in commercial fish: optimizing individual choices to reduce risk. Environ Health Perspect 113(3):266–271

    Article  CAS  PubMed  Google Scholar 

  • Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture 436:95–103

    Article  CAS  Google Scholar 

  • Cheng Q, Su B, Qin Z, Weng CC, Yin F, Zhou Y, Fobes M, Perera DA, Shang M, Soller F, Shi Z, Davis A, Dunham RA (2014) Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res 23(5):729–742

    Article  CAS  PubMed  Google Scholar 

  • Colombo SM, Wacker A, Parrish CC, Kainz MJ, Arts MT (2017) A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environ Rev 25(2):163–174

    Article  CAS  Google Scholar 

  • Coogan M, Alston V, Su B, Khalil K, Elaswad A, Khan M, Johnson A, Xing D, Li S, Wang J, Simora RMC, Lu C, Page-McCaw P, Chen W, Michel M, Wang W, Hettiarachchi D, Hasin T, Butts IAE, Cone RD, Dunham RA (2022a) Improved growth and high inheritance of melanocortin-4 receptor (mc4r) mutation in CRISPR/Cas-9 gene-edited channel Catfish, Ictalurus punctatus. Mar Biotechnol 24:1–13

    Article  Google Scholar 

  • Coogan M, Alston V, Su B, Khalil K, Elaswad A, Khan M, Simora RMC, Johnson A, Xing D, Li S, Wang J, Lu C, Wang W, Hettiarachchi D, Hasin T, Terhune J, Butts IAE, Dunham RA (2022b) CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture 557:738290

    Article  CAS  Google Scholar 

  • Crop Biotech Update (2019) Gene-edited tilapia not classified as GMO in Argentina. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=17132. Accessed 13 March 2022

  • Cuevas-Uribe R & Tiersch TR (2011) Estimation of fish sperm concentration by use of spectrophotometry. Cryopreservation in Aquatic Species, 2nd edn. World Aquaculture Society, Baton Rouge, pp 162–200

  • Curtis KR, McCluskey JJ, Wahl TI (2004) Consumer acceptance of genetically modified food products in the developing world. AgBioforum 7(1&2):70–75

    Google Scholar 

  • Dineshbabu G, Goswami G, Kumar R, Sinha A, Das D (2019) Microalgae–nutritious, sustainable aqua-and animal feed source. J Funct Foods 62:103545

    Article  CAS  Google Scholar 

  • Du Sert NP, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 18(7):e3000411

    Article  Google Scholar 

  • Dunham RA (2011) Aquaculture and fisheries biotechnology: genetic approaches. CABI Wallingford, Oxfordshire

    Book  Google Scholar 

  • Elaswad A, Khalil K, Cline D, Cone R (2018) Dunham R (2018) Microinjection of CRISPR/cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. J vis Exp 131:e56275

    Google Scholar 

  • FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    Article  CAS  PubMed  Google Scholar 

  • Fei F, Sun SY, Yao YX, Wang X (2017) Generation and phenotype analysis of zebrafish mutations of obesity-related genes lepr and MC4R. Acta Physiologica Sinica 69:61–69

    PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  • Furuita H, Yamamoto T, Shima T, Suzuki N, Takeuchi T (2003) Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus. Aquaculture 220(1–4):725–735

    Article  CAS  Google Scholar 

  • Goñi N, Arrizabalaga H (2010) Seasonal and interannual variability of fat content of juvenile albacore (Thunnus alalunga) and bluefin (Thunnus thynnus) tunas during their feeding migration to the Bay of Biscay. Prog Oceanogr 86(1–2):115–123

    Article  Google Scholar 

  • Hanson T, Sites D (2015) 2014 U.S. Catfish Database. MSU AEC Information Report. Retrieved from http://www.agecon.msstate.edu/whatwedo/budgets/docs/catfish2014.pdf

  • Hasan MR, Soto S (2017) Improving Feed Conversion Ratio and Its Impact on Reducing Greenhouse Gas Emissions in Aquaculture. FAO Non-Serial Publication 33. FAO, Rome

  • Henderson RJ (1996) Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch Anim Nutr 49(1):5–22

    CAS  Google Scholar 

  • Huang Y, Bugg W, Bangs B, Qin G, Drescher D, Backenstose N, Weng CC, Zhang Y, Khalil K, Dong S, Elaswad A, Ye Z, Lu C, Vo K, Simora RM, Ma X, Taylor Z, Yang Y, Zhou T, Guo J, Salze G, Qin Z, Wang Y, Dunham RA (2021) Direct and pleiotropic effects of the masou Salmon Delta5-Desaturase Transgene in F1 Channel Catfish (Ictalurus punctatus). Transgenic Res 30:185–200

    Article  CAS  PubMed  Google Scholar 

  • Idler DR, Bitners I (1958) Biochemical studies on sockeye salmon during spawning migration: II. Cholesterol, fat, protein, and water in the flesh of standard fish. Can J Biochem Physiol 36(8):793–798

    Article  CAS  PubMed  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629–637

    Article  CAS  PubMed  Google Scholar 

  • Japan embraces CRISPR-edited fish (2022) Nat Biotechnology, 40:10

  • Jiang DN, Li JT, Tao YX, Chen HP, Deng SP, Zhu CH, Li GL (2017) Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. J Comp Physiol B 187(4):603–612

    Article  CAS  PubMed  Google Scholar 

  • Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Ribinson D, Dunham R (2017) Generation of myostatin gene edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7:1–12

    Article  Google Scholar 

  • Kim KS, Thomsen H, Bastiaansen J, Nguyen NT, Dekkers JC, Plastow GS, Rothschild MF (2004) Investigation of obesity candidate genes on porcine fat deposition quantitative trait loci regions. Obes Res 12:1981–1994

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Lee JJ, Shin HY, Choi BH, Lee CK, Kim JJ, Cho BW, Kim TH (2006) Association of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits. Anim Genet 37:419–421

    Article  CAS  PubMed  Google Scholar 

  • Kiron V, Satoh S, Takeuchi T, Yoshizaki G (2008) Cloning and over-expression of a masu salmon (Oncorhynchus masou) fatty acid elongase-like gene in zebrafish. Aquaculture 282(1–4):13–18

    Google Scholar 

  • Kris-Etherton PM, Innis S, Association AD (2007) Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids. J Am Diet Assoc 107(9):1599–1611

    CAS  PubMed  Google Scholar 

  • Kurita K, Burgess SM, Sakai N (2004) Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proc Natl Acad Sci 101(5):1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritzen L (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park S, Kim H, Lee SK, Kim JW, Lee HK, Joeng DK, Lee SJ (2013) A C1069G SNP of the MC4R gene and its association with economic traits in Korean native cattle (brown, brindle, and black). Electron J Biotechnol 16:14

    Article  Google Scholar 

  • Liu R, Kinoshita M, Adolfi MC, Schartl M (2019) Analysis of the role of the MC4R system in development, growth, and puberty of medaka. Front Endocrinol 10:213

    Article  Google Scholar 

  • Liu C, Ye D, Wang H, He M, Sun Y (2020) Elovl2 but not Elovl5 is essential for the biosynthesis of docosahexaenoic acid (DHA) in zebrafish: insight from a comparative gene knockout study. Mar Biotechnol 22(5):613–619

    Article  Google Scholar 

  • Lusher A, Hollman P, Mendoza-Hill J (2017) Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. FAO, Rome

  • Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7(10):1765–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazorra C, Bruce M, Bell JG, Davie A, Alorend E, Jordan N, Rees J, Papanikos N, Porter M, Bromage N (2003) Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 227(1–4):21–33

    Article  CAS  Google Scholar 

  • Meesapyodsuk D, Reed DW, Covello PS, Qiu X (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. J Biol Chem 282(28):20191–20199

    Article  CAS  PubMed  Google Scholar 

  • Mimouni V, Ulmann L, Haimeur A, Guéno F, Meskini N, Tremblin G (2015) Marine microalgae used as food supplements and their implication in preventing cardiovascular diseases. OCL 22(4):D409

    Article  Google Scholar 

  • Mohanty BP, Ganguly S, Mahanty A, Sankar TV, Anandan R, Chakraborty K, Paul BN, Sarma D, Dayal JS, Venkateshwarlu G, Matthew S, Asha KK, Sridhar N (2016) DHA and EPA content and fatty acid profile of 39 food fishes from India. BioMed Res Int 2016:4027437

    Article  PubMed  PubMed Central  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11(11):4662–4697

    Article  PubMed  PubMed Central  Google Scholar 

  • NMFS/NOAA (National Marine Fisheries Service—National Oceanic and Atmospheric Administration), 2013. Fisheries of the United States 2016. Current Fisheries Statistics No. 2016. NOAA, September 2013

  • Nordrum A (2019) Transgenic salmon hits US Shelves. IEEE Spectr 57(1):44–47

    Article  Google Scholar 

  • Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J, Covas MI, Arós F, Lapetra J, Serra-Majem L, Gómez-Gracia E, Fiol M, Sáez-Tormo G, Pintó X, Muñoz MA, Ros E, Ordovás JM, Estruch M, Corella D (2012) Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol 11:1–12

    Article  Google Scholar 

  • Owens L (2012) Diseases. In: Lucas JS, Southgate PC (eds) Aquaculture: farming aquatic animals and plants. Wiley, New York, pp 214–228

    Google Scholar 

  • Parzanini C, Parrish CC, Hamel JF, Mercier A (2019) Reviews and syntheses: Insights into deep-sea food webs and global environmental gradients revealed by stable isotope (δ15N, δ13C) and fatty acid trophic biomarkers. Biogeosciences 16(14):2837–2856

    Article  CAS  Google Scholar 

  • Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT (2020) Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environ Rev 28(4):546–559

    Article  CAS  Google Scholar 

  • Peterman MA, Posadas BC (2019) Direct economic impact of fish diseases on the East Mississippi catfish industry. N Am J Aquac 81(3):222–229

    Article  Google Scholar 

  • Phelps RP, Hastey R, Pendetar A, Linley L, Papanikos N, Dunham RA (2007) Effects of temperature on the induced spawning of channel catfish and the production of channel × blue catfish hybrid fry. Aquaculture 273(1):80–86

    Article  Google Scholar 

  • Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA (2016) Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol 18(2):255–263

    Article  CAS  Google Scholar 

  • Robinson EH, Li MH, Oberle DF (2001) Nutrient characteristics of pond-raised channel catfish. Mississippi Agricultural & Forestry Experiment Station, Starkville

    Google Scholar 

  • Robinson EH, Li MH (2015) Feed conversion ratio for pond-raised catfish. Mississippi Agricultural & Forestry Experiment Station, Starkville

    Google Scholar 

  • Saunders AV, Davis BC, Garg ML (2013) Omega-3 polyunsaturated fatty acids and vegetarian diets. Med J Aust 199:S22–S26

    Article  PubMed  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379

    Article  CAS  PubMed  Google Scholar 

  • Smith CC, Harris RM, Lampert KP, Schartl M, Hofmann HA, Ryan MJ (2015) Copy number variation in the melanocortin 4 receptor gene and alternative reproductive tactics the swordtail Xiphophorus multilineatus. Environ Biol Fishes 98(1):23–33

    Article  Google Scholar 

  • Song Y, Cone RD (2007) Creation of a genetic model of obesity in a teleost. FASEB J 21:2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochem Biophys Acta 1486:219–231

    CAS  PubMed  Google Scholar 

  • Stäubert C, Tarnow P, Brumm H, Pitra C, Gudermann T, Gruters A, Schöneberg T, Biebermann H, Römpler H (2007) Evolutionary aspects in evaluating mutations in the melanocortin-4 receptor. Endocrinology 148:4642–4648

    Article  PubMed  Google Scholar 

  • Tekedar HC, Karsi A, Williams ML, Vamenta S, Banes MM, Duke M, Scheffler BE, Lawrence ML (2013) Complete genome sequence of channel catfish gastrointestinal septicemia isolate Edwardsiella tarda C07–087. Genome Announc 1(6):e00959-e1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker C (2012) Channel catfish. Aquaculture farming aquatic animals and plants, 2nd edn. Wiley-Blackwell, Sussex, pp 365–383

    Google Scholar 

  • U.S. Food and Drug Administration (2020) FDA approves first-of-its-kind intentional genomic alteration in line of domestic pigs for both human food, potential therapeutic uses. https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-intentional-genomic-alteration-line-domestic-pigs-both-human-food. Accessed 13 March 2022

  • Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang S, Prakash A, Chen W, Sood R, Ledin J, Burgess SM (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25(7):1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner BA, Wise DJ, Khoo LH, Terhune JS (2002) The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 14(4):263–272

    Article  PubMed  Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68(5):280–289

    Article  PubMed  Google Scholar 

  • Wang S, Monroig O, Tang G, Zhang L, You C, Tocher DR, Li Y (2014) Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish: functional characterization of fatty acyl desaturase (Fads2) and Elovl5 elongase in the catadromous species, Japanese eel Anguilla japonica. Aquaculture 434:57–65

    Article  CAS  Google Scholar 

  • Xing D, Su B, Li S, Bangs M, Creamer D, Coogan M, Wang W, Simora RMC, Ma X, Hettiarachchi D, Alston V, Wang W, Johnson A, Lu C, Hasin T, Qin Z, Dunham R (2022a) CRISPR/Cas9-mediated transgenesis of the masu salmon (Oncorhynchus masou) elovl2 gene improves n-3 fatty acid content in channel catfish (Ictalurus punctatus). Mar Biotechnol 24:1–11

    Article  Google Scholar 

  • Xing D, Su B, Bangs M, Li S, Wang J, Bern L, Simora RMC, Wang W, Ma X, Coogan M, Johnson A, Wang Y, Qin Z, Dunham R (2022b) CRISPR/Cas9-mediated knock-in method can improve the expression and effect of transgene in P1 generation of channel catfish (Ictalurus punctatus). Aquaculture 560:738531

    Article  CAS  Google Scholar 

  • Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7(1):1–10

    Article  Google Scholar 

  • Zhang X, Huang J, Qiu H, Huang Z (2010) A consumer segmentation study with regards to genetically modified food in urban China. Food Policy 35(5):456–462

    Article  Google Scholar 

  • Zhou T, Yuan Z, Tan S, Jin Y, Yang Y, Shi H, Wang W, Niu D, Goa L, Jiang W, Gao D, Liu Z (2018) A review of molecular responses of catfish to bacterial diseases and abiotic stresses. Front Physiol 9:1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupo V, Graber G, Kamel S, Plichta V, Granitzer S, Gundacker C, Wittmann KJ (2019) Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ Pollut 255:112975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Sushil Adhikari’s research group and the Center for Bioenergy and Bioprodroducts at Auburn University and Professor D. Allen Davis’ research group at Auburn University for assisting with the fatty acid composition. This project was partially funded by USDA-NIFA award 2015-67015-23488 to Roger Cone and by an Ocean University China-Auburn University grant to Rex Dunham, Zhenkui Qin, and Baofeng Su.

Author information

Authors and Affiliations

Authors

Contributions

MC conceived and designed the study, collected and analyzed data, generated and cultured the fish, and wrote the manuscript. DX developed the ccβA-msElovl2 plasmid containing the masu salmon, Onchorhynchus masou, elongase gene driven by the common carp β-actin promoter and assisted in fatty acid analysis. BS was a supervisory team leader, developed the primers and analyzed the data. VA, AJ, JW, SL, WW, DH, and TH collected data. AJ, JW, SL, DX, and BS cultured fish. MK, AE and KK developed brood stock. CL, BS, MK, and MS developed laboratory methodology. ZQ and RC assisted with initial research stages of elongase research within our laboratory. Ian Butts was a supervisory team member and assisted with statistical analyses. RD was the principal investigator and assisted with writing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Michael Coogan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1185 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coogan, M., Xing, D., Su, B. et al. CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome. Transgenic Res 32, 251–264 (2023). https://doi.org/10.1007/s11248-023-00346-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-023-00346-w

Keywords

Navigation