Skip to main content
Log in

On asymptotically almost periodic solutions to the Navier–Stokes equations in hyperbolic manifolds

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the forward asymptotically almost periodic (AAP-) mild solutions of Navier–Stokes equations on the real hyperbolic manifold \(\mathcal {M}=\mathbb {H}^d(\mathbb {R})\) with dimension \(d \geqslant 2\). Using the dispersive and smoothing estimates for the Stokes equation, we invoke the Massera-type principle to prove the existence and uniqueness of the AAP- mild solution for the inhomogeneous Stokes equations in \(L^p(\Gamma (T\mathcal {M})))\) space with \(1<p\leqslant d\). Next, we establish the existence and uniqueness of the small AAP- mild solutions of the Navier–Stokes equations using the fixed point argument, and the results of inhomogeneous Stokes equations. The asymptotic behaviour (exponential decay and stability) of these small solutions is also related. This work, together with our recent work (Xuan et al. in J Math Anal Appl 517(1):1–19, 2023), provides a full existence and asymptotic behaviour of AAP- mild solutions of Navier–Stokes equations in \(L^p(\Gamma (T\mathcal {M})))\) spaces for all \(p>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Balentin, B.: Well-posedness and global in time behaviour for \(L^p\)- mild solutions to the Navier–Stokes equation on the hyperbolic space, Ph.D. thesis, University of Colorado Boulder (2020). arXiv:2008.01850

  2. Cheban, D.N.: Asymptotically Almost Periodic Solutions of Differential Equations. Hindawi Publishing Corporation, New York (2009)

    Book  MATH  Google Scholar 

  3. Czubak, M., Chan, C.H.: Non-uniqueness of the Leray–Hopf solutions in the hyperbolic setting. Dyn. PDE 10(1), 43–77 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Czubak, M., Chan, C.H.: Remarks on the weak formulation of the Navier–Stokes equations on the 2D-hyperbolic space. Ann. Inst. H. Poincare C Non Linear Anal. 33(3), 655–698 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Czubak, M., Chan, C.H., Disconzi, M.: The formulation of the Navier–Stokes equations on Riemannian manifolds. J. Geom. Phys. 121, 335–346 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer International Publishing, Cham (2013)

    Book  MATH  Google Scholar 

  7. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. (2) 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, S., Luo, D.: Constantin and Iyer’s representation formula for the Navier–Stokes equations on manifolds. Potent. Anal. 48, 181–206 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, S.: Nash embedding, shape operator and Navier–Stokes equation on a Riemannian manifold. Acta Math. Appl. Sin. Engl. Ser. 36(2), 237–252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farwig, R., Tanuichi, Y.: Uniqueness of backward asymptotically almost periodic in time solutions to Navier–Stokes equations in unbounded domains. Discrete Contin. Dyn. Syst. Ser. S 6(5), 1215–1224 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Geissert, M., Hieber, M., Nguyen, T.H.: A general approach to time periodic incompressible viscous fluid flow problems. Arch. Ration. Mech. Anal. 220, 1095–1118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hieber, M., Huy, N.T., Seyfert, A.: On periodic and almost periodic solutions to incompressible viscous fluid flow problems on the whole line. Math. Nonlinear Phenom. Anal. Comput. (2017)

  13. Huy, N.T.: Periodic motions of Stokes and Navier–Stokes flows around a rotating obstacle. Arch. Ration. Mech. Anal. 213, 689–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huy, N.T., Duoc, T.V., Ha, V.T.N., Mai, V.T.: Boundedness, almost periodicity and stability of certain Navier–Stokes flows in unbounded domains. J. Differ. Equ. 263(12) (2017)

  15. Huy, N.T., Ha, V.T.N., Sac, L.T., Xuan, P.T.: Interpolation spaces and weighted pseudo almost automorphic solutions to parabolic equations and applications to fluid dynamics. Czech. Math. J. 72(147), 935–955 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Huy, N.T., Ha, V.T.N., Sac, L.T., Xuan, P.T.: Periodic and almost periodic solutions for the Navier–Stokes equations on interpolation spaces with Muckenhopt weight. Ukrain. Math. J. (2021) (accepted for publication)

  17. Huy, N.T., Ha, V.T.N., Sac, L.T., Xuan, P.T.: Weighted Stepanov-like pseudo almost automorphic solutions for evolution equations and applications. Acta Math. Vietnam 46(5), 103–122 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Huy, N.T., Xuan, P.T., Ha, V.T.N., Mai, V.T.: Periodic solutions to Navier–Stokes equations on non-compact Einstein manifolds with negative curvature. Anal. Math. Phys. 11, 60 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huy, N.T., Xuan, P.T., Ha, V.T.N., Van, N.T.: Periodic and almost periodic parabolic evolution flows and their stability on Einstein manifolds. Ann. Polon. Math. 129(2), 147–174 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huy, N.T., Xuan, P.T., Ha, V.T.N., Van, N.T.: On periodic solutions for the Navier–Stokes equations on non compact Riemannian manifolds. Taiwan. J. Math. 26(3), 607–633 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Khesin, B., Misiolek, G.: Euler and Navier–Stokes equations on the hyperbolic plane. Proc. Natl. Acad. Sci. USA 109(45), 18324–18326 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kozono, H., Nakao, M.: Periodic solution of the Navier–Stokes equations in unbounded domains. Tôhoku Math. J. 48, 33–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lichtenfelz, L.A.: Nonuniqueness of solutions of the Navier–Stokes equations on Riemannian manifolds. Ann. Global Anal. Geom. 50, 237–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lohoué, N.: Estimation des projecteurs de De Rham Hodge de certaines variété riemanniennes non compactes. Math. Nachr. 279(3), 272–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magniez, J., Ouhabaz, E.M.: \(L^p\)-estimates for the heat semigroup on differential forms, and related problems. J. Geom. Anal. 30, 3002–3025 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pierfelice, V.: The incompressible Navier–Stokes equations on non-compact manifolds. J. Geom. Anal. 27(1), 577–617 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xuan, P.T., Van, N.T., Quoc, B.: On asymptotically almost periodic solution of parabolic equations on real hyperbolic manifolds. J. Math. Anal. Appl. 517(1), 1–19 (2023)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q.S.: The ill-posed Navier–Stokes equation on connected sums of \(\mathbb{R} ^3\). Complex Var. Ellipt. Equ. 51(8–11), 1059–1063 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Vietnam Institute for Advanced Study in Mathematics (VIASM) 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Truong Xuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we will prove the boundedness of the following integrals which are used in the previous sections

$$\begin{aligned} I_1= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta }{d}}e^{-\beta _1(t-\tau )}e^{-\sigma \tau }\textrm{d}\tau<+\infty ,\\ I_2= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta }{d}}e^{-\hat{\beta }_1(t-\tau )}e^{-\sigma \tau }\textrm{d}\tau<+\infty ,\\ I_3= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{2(1-\delta )}{d}}e^{-({\beta }-\sigma )(t-\tau )}e^{-\sigma \tau }\textrm{d}\tau<+\infty ,\\ I_4= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta }{d}}e^{-({\beta } -\sigma )(t-\tau )} \textrm{d}\tau<+\infty ,\\ I_5= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{1-\delta }{d}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau<+\infty ,\\ \tilde{I}_5= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}e^{-(\beta _1-\sigma )(t-\tau )}\textrm{d}\tau<+\infty ,\\ I_6= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta }{d}}e^{-({\beta }-\sigma -\sigma ^*)(t-\tau )} \textrm{d}\tau<+\infty \\ \tilde{I}_6= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{2(1-\delta )}{d}}e^{-({\beta }-\sigma ^*-\sigma )(t-\tau )} \textrm{d}\tau <+\infty , \end{aligned}$$

where t>0, \(1<p\leqslant d\) and \(0<\sigma <{\beta }\) for \(I_3,\, I_4\); \(0<\sigma <\beta _1\) for \(I_5,\, \tilde{I}_5\); \(0<\sigma +\sigma ^*<{\beta }\) for \(I_6,\, \tilde{I}_6\).

The boundedness of integrals \(I_1,\, I_2,\, I_3,\, I_4\) is useful to the proof of Assertion (i) in Lemma 3.2. The boundedness of integrals \(I_5,\, I_6, \, \tilde{I}_6\) serves to the proof of Assertion (ii) in Theorem 4.1. Moreover, if we consider the integral on \((-\infty ,t]\) for all \(t\in \mathbb {R}\), then we have the following bounded integrals

$$\begin{aligned} \tilde{I}_1= & {} \int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}\lambda ^{-1}(\tau )e^{-\beta _1(t-\tau )}\textrm{d}\tau<+\infty ,\\ \tilde{I}_2= & {} \int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}\lambda ^{-1}(\tau )e^{-\hat{\beta }_1(t-\tau )}\textrm{d}\tau<+\infty ,\\ \tilde{I}_3= & {} \lambda (t)\int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}\lambda ^{-2}(\tau )e^{-{\beta }(t-\tau )}\textrm{d}\tau<+\infty ,\\ \tilde{I}_4= & {} \lambda (t)\int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}\lambda ^{-1}(\tau )e^{-{\beta }(t-\tau )} \textrm{d}\tau <+\infty . \end{aligned}$$

These boundedness are useful to prove the Assertion (ii) in Lemma 3.2.

The boundedness of integral \(I_1,\, I_2,\, I_4,\, I_5\) and \(I_6\) is similar. We prove only the boundedness of \(I_5\). Indeed, we consider the following cases of t:

\({{\textrm{Case}}\, 1:\,0<t<1.}\) We have

$$\begin{aligned} I_5= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{1-\delta }{d}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \int _0^t (t-\tau )^{-\frac{1+\delta }{2}} \tau ^{-\frac{1-\delta }{2}} \textrm{d}\tau \\\leqslant & {} \textbf{B}\left( \frac{1-\delta }{2},\,\frac{1+\delta }{2} \right) <+\infty , \end{aligned}$$

where \(\textbf{B}(\cdot ,\, \cdot )\) is beta function.

\({{\textrm{Case}}\,2:\,1\leqslant t.}\) We have

$$\begin{aligned} I_5= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{1-\delta }{d}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\= & {} \int _0^1 [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{1-\delta }{d}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\{} & {} + \int _1^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{1-\delta }{d}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \int _0^1 \left( (t-\tau )^{-\frac{1+\delta }{2}}+1\right) \tau ^{-\frac{1-\delta }{2}} e^{-(\beta _1 - \sigma ) (t-\tau )} \textrm{d}\tau \\{} & {} + \int _1^t (t-\tau )^{-\frac{1+\delta }{2}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \int _0^t (t-\tau )^{-\frac{1+\delta }{2}}\tau ^{-\frac{1-\delta }{2}} \textrm{d}\tau + \int _0^1 \tau ^{-\frac{1-\delta }{2}} \textrm{d}\tau \\{} & {} + \int _0^t (t-\tau )^{-\frac{1+\delta }{2}} e^{-(\beta _1-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \textbf{B}\left( \frac{1-\delta }{2},\, \frac{1+\delta }{2} \right) + \frac{2}{1+\delta } + (\beta _1-\sigma )^{-\frac{1-\delta }{2}}\mathbf {\Gamma }\left( \frac{1-\delta }{2}\right) <+\infty , \end{aligned}$$

where \(\mathbf {\Gamma }(\cdot )\) is gamma function.

The boundedness of integrals \(I_3\) and \(\tilde{I}_6\) is similar, we prove only for \(I_3\) as follows:

\({{\textrm{Case}}\, 1:\,0<t<1.}\) We have

$$\begin{aligned} I_3= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{2(1-\delta )}{d}} e^{-({\beta }-\sigma ) (t-\tau )} e^{-\sigma \tau } \textrm{d}\tau \\\leqslant & {} \int _0^t (t-\tau )^{-\frac{1+\delta }{2}} \tau ^{-(1-\delta )} \textrm{d}\tau \\\leqslant & {} t^{\frac{1-\delta }{2}}{} \textbf{B}\left( \frac{1-\delta }{2},\,\delta \right) <+\infty , \end{aligned}$$

because \(0<t<1\).

\({{\textrm{Case}}\,2:\,1\leqslant t.}\) We have

$$\begin{aligned} I_3= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{2(1-\delta )}{d}} e^{-({\beta }-\sigma ) (t-\tau )} e^{-\sigma \tau } \textrm{d}\tau \\= & {} \int _0^1 [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{2(1-\delta )}{d}} e^{-({\beta }-\sigma ) (t-\tau )} \textrm{d}\tau \\{} & {} + \int _1^t [h_d(t-\tau )]^{\frac{1+\delta }{d}} [h_d(\tau )]^{\frac{2(1-\delta )}{d}} e^{-({\beta }-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \int _0^1 \left( (t-\tau )^{-\frac{1+\delta }{2}}+1\right) \tau ^{-(1-\delta )}e^{-({\beta }-\sigma )\tau } \textrm{d}\tau \\{} & {} + \int _1^t (t-\tau )^{-\frac{1+\delta }{2}} e^{-({\beta }-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \left( 2^{\frac{1+\delta }{2}}+1\right) \int _0^{1/2} \tau ^{-(1-\delta )} \textrm{d}\tau + 2^{1-\delta }\int _{1/2}^1 \left( (t-\tau )^{-\frac{1+\delta }{2}}+1\right) e^{-({\beta }-\sigma )\tau }\textrm{d}\tau \\{} & {} + \int _0^t (t-\tau )^{-\frac{1+\delta }{2}} e^{-({\beta }-\sigma ) (t-\tau )} \textrm{d}\tau \\\leqslant & {} \left( 2^{\frac{1+\delta }{2}}+1\right) \frac{1}{\delta 2^\delta } + \frac{2^{1-\delta }}{{\beta }-\sigma }\left( e^{-\frac{{\beta }-\sigma }{2}}- e^{-({\beta }-\sigma )}\right) \\{} & {} + (2^{1-\delta }+1) ({\beta }-\sigma )^{-\frac{1-\delta }{2}}\mathbf {\Gamma }\left( \frac{1-\delta }{2}\right) <+\infty . \end{aligned}$$

The boundedness of integral \(\tilde{I}_5\) is established as follows—

$$\begin{aligned} \tilde{I}_5= & {} \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}e^{-(\beta _1-\sigma )(t-\tau )}\textrm{d}\tau \\\leqslant & {} \int _0^t \left( C^{\frac{1+\delta }{d}}(t-\tau )^{-\frac{1+\delta }{2}}+1\right) e^{-(\beta _1-\sigma )(t-\tau )}\textrm{d}\tau \\\leqslant & {} C^{\frac{1+\delta }{d}} (\beta _1-\sigma )^{-\frac{1-\delta }{2}}{\varvec{\Gamma }}\left( \frac{1-\delta }{2} \right) + \frac{1}{\beta _1-\sigma }\left( 1 - e^{-(\beta _1-\sigma )t}\right) <+\infty . \end{aligned}$$

Now, we consider the boundedness of integrals \(\tilde{I}_1,\,\tilde{I}_2,\, \tilde{I}_3,\, \tilde{I}_4\) on \((-\infty ,t]\) for all \(t\in \mathbb {R}\). These integrals appear in the proof of Assertion (ii) in Lemma 3.2. The boundedness of \(\tilde{I}_1,\, \tilde{I}_2,\, \tilde{I}_4\) are similar, we check for example the boundedness of \(\tilde{I}_4\):

$$\begin{aligned} \tilde{I}_4 = \lambda (t)\int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}\lambda ^{-1}(\tau )e^{-{\beta }(t-\tau )}\textrm{d}\tau , \end{aligned}$$

where we recall that for \(0<\delta<\dfrac{\delta +1}{2}<\delta '<1\):

$$\begin{aligned} \lambda (t) = \left\{ \begin{array}{ll} {[}h_d(t)]^{-\frac{1-\delta }{d}}e^{\sigma t}&{}\quad \hbox { if } t\geqslant 0, \\ {[}h_d(|t|)]^{-\frac{1-\delta '}{d}} &{}\quad \hbox { if } t<0. \end{array}\right. \end{aligned}$$

\({{\textrm{Case}}\,1:\,t<0.}\) We have

$$\begin{aligned} \tilde{I}_4\lesssim & {} \int _{-\infty }^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\{} & {} \hbox { (because } [h_d(|t|)]^{-\frac{1-\delta '}{d}}<C^{\frac{1-\delta '}{2}})\\= & {} \int _{-\infty }^{t-1} [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\{} & {} + \int _{t-1}^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\= & {} \int _{-\infty }^{t-1} e^{-{\beta }(t-\tau )}\textrm{d}\tau + \int _{t-1}^t (t-\tau )^{-\frac{1+\delta }{2}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\= & {} \frac{1}{{\beta }}e^{-{\beta }}+A, \end{aligned}$$

where

$$\begin{aligned} A= \int _{t-1}^t (t-\tau )^{-\frac{1+\delta }{2}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau . \end{aligned}$$

If \(t\leqslant -1\), then

$$\begin{aligned} A= & {} \int _{t-1}^t (t-\tau )^{-\frac{1+\delta }{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \leqslant \frac{2}{1-\delta }<+\infty . \end{aligned}$$

If \(-1<t<0\), then

$$\begin{aligned} A= & {} \int _{t-1}^{-1} (t-\tau )^{-\frac{1+\delta }{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\{} & {} +\int _{-1}^{t} (t-\tau )^{-\frac{1+\delta }{2}}|\tau |^{-\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\\leqslant & {} \frac{2}{1-\delta }\left( 1- (t+1)^{\frac{1-\delta }{2}}\right) + \int _{-1}^{t} (t-\tau )^{-\frac{1+\delta }{2}}|\tau |^{-\frac{1-\delta '}{2}}\textrm{d}\tau \\= & {} \frac{2}{1-\delta }\left( 1- (t+1)^{\frac{1-\delta }{2}}\right) + \int _{0}^{t+1} \tau ^{-\frac{1+\delta }{2}}|t-\tau |^{-\frac{1-\delta '}{2}}\textrm{d}\tau \\= & {} \frac{2}{1-\delta }\left( 1- (t+1)^{\frac{1-\delta }{2}}\right) + \int _{0}^{t+1} \tau ^{-\frac{1+\delta }{2}}(\tau -t)^{-\frac{1-\delta '}{2}}\textrm{d}\tau \\\leqslant & {} \frac{2}{1-\delta }\left( 1- (t+1)^{\frac{1-\delta }{2}}\right) + \int _{0}^{t+1} \tau ^{-\frac{1+\delta }{2}}\tau ^{-\frac{1-\delta '}{2}}\textrm{d}\tau \\{} & {} \hbox { (because }\tau +1>\tau -t>\tau >0)\\= & {} \frac{2}{1-\delta }\left( 1- (t+1)^{\frac{1-\delta }{2}}\right) + \frac{2}{\delta '-\delta }(t+1)^{\frac{\delta '-\delta }{2}}<+\infty . \end{aligned}$$

\({{\textrm{Case}}\,2:\,\hbox {t}>0.}\) We have

$$\begin{aligned} \tilde{I}_4= & {} \int _{-\infty }^0 [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\{} & {} + \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta '}{d}}e^{-({\beta }-\sigma )(t-\tau )}\textrm{d}\tau \\= & {} B+C, \end{aligned}$$

where

$$\begin{aligned} B= \int _{-\infty }^0 [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau , \\ C= \int _0^t [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(\tau )]^{\frac{1-\delta '}{d}}e^{-({\beta }-\sigma )(t-\tau )}\textrm{d}\tau . \end{aligned}$$

The boundedness of C is similar the boundedness of integrals \(I_1,\,I_2,\,I_3,\,I_4\). Now, we prove the boundedness of B as follows—

$$\begin{aligned} B= & {} \int _{-\infty }^0 [h_d(t-\tau )]^{\frac{1+\delta }{d}}[h_d(|\tau |)]^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\= & {} \int _{-\infty }^{-1} [h_d(t-\tau )]^{\frac{1+\delta }{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\{} & {} + \int _{-1}^0 [h_d(t-\tau )]^{\frac{1+\delta }{d}}|\tau |^{\frac{1-\delta '}{d}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\= & {} \int _1^\infty [h_d(\tau )]^{\frac{1+\delta }{d}}e^{-{\beta }\tau }\textrm{d}\tau + \int _{-1}^0 [h_d(t-\tau )]^{-\frac{1+\delta }{d}}|\tau |^{\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\\leqslant & {} \int _0^\infty \left( \tau ^{-\frac{1+\delta }{2}}+1\right) e^{-{\beta }\tau }\textrm{d}\tau + \int _{-1}^0 [h_d(t-\tau )]^{-\frac{1+\delta }{d}}|\tau |^{\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\\leqslant & {} {\beta }^{-\frac{1-\delta }{2}}{\varvec{\Gamma }}\left( \frac{1-\delta }{2}\right) + \frac{1}{{\beta }} + D, \end{aligned}$$

where

$$\begin{aligned} D= \int _{-1}^0 [h_d(t-\tau )]^{-\frac{1+\delta }{d}}|\tau |^{\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau . \end{aligned}$$

If \(t>1\), we have

$$\begin{aligned} D= & {} \int _{-1}^0 |\tau |^{-\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \leqslant \int _{-1}^0 |\tau |^{-\frac{1-\delta '}{2}}\textrm{d}\tau = \frac{2}{1+\delta }<+\infty . \end{aligned}$$

If \(0<t\leqslant 1\), then

$$\begin{aligned} D= & {} \int _{-1}^0 (t-\tau )^{-\frac{1+\delta }{2}}|\tau |^{-\frac{1-\delta '}{2}}e^{-{\beta }(t-\tau )}\textrm{d}\tau \\\leqslant & {} \int _{-1}^0 (-\tau )^{-\frac{1+\delta }{2}}(-\tau )^{-\frac{1-\delta '}{2}} \textrm{d}\tau = \frac{2}{\delta '-\delta }<+\infty . \end{aligned}$$

The boundedness of \(\tilde{I}_4\) is completed. The boundedness of \(\tilde{I}_3\) is done in the same way as above, but we need the condition that \(\dfrac{1+\delta }{2}<\delta '<1\) to guarantee that

$$\begin{aligned} \int _{0}^{t+1}\tau ^{-\frac{1+\delta }{2}}\tau ^{-2\frac{1-\delta '}{2}}\textrm{d}\tau= & {} \int _{0}^{t+1}\tau ^{\delta '-\frac{\delta +3}{2}} \textrm{d}\tau \\= & {} \frac{2}{2\delta '-(1+\delta )}(t+1)^{\frac{2\delta '-(1+\delta )}{2}}<+\infty , \end{aligned}$$

where \(-1<t<0\) and

$$\begin{aligned} \int _{-1}^0 (-\tau )^{-\frac{1+\delta }{2}}(-\tau )^{-2\frac{1-\delta '}{2}}\textrm{d}\tau = \int _{-1}^0 (-\tau )^{\delta '-\frac{\delta +3}{2}}\textrm{d}\tau = \frac{2}{2\delta '-(1+\delta )} <+\infty . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, P.T., Van, N.T. On asymptotically almost periodic solutions to the Navier–Stokes equations in hyperbolic manifolds. J. Fixed Point Theory Appl. 25, 71 (2023). https://doi.org/10.1007/s11784-023-01074-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-023-01074-8

Keywords

Mathematics Subject Classification

Navigation