Skip to main content
Log in

Presenting AR Model Error in Terms of Geman-McClure Function for Prediction of Processes in Telecommunications

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Specific features of using the Geman-McClure function have been analyzed that are based on its properties in predicting telecommunication processes with anomalies or deviations by using an autoregressive model AR(p). The proposed modification of model AR(p) involves the presenting of prediction error in Geman-McClure metric that is based on this function and subsequent determining of coefficients of AR(p) model in this metric by employing equations presented in this paper that are similar to the Yule-Walker equations in presenting the prediction error of AR(p) model in L2 metric. Based on the comparative analysis and simulation, it has been established that AR(p) model in the Geman-McClure metric as compared with the classic AR(p) model in L2 metric makes it possible to enhance the prediction accuracy in telecommunication processes with anomalies or deviations by the factor of up to 1.5, while the efficiency of its use increases with the rise of model order p and the degree of process correlation that is subject to prediction. It has been shown that the practical use in telecommunications of the proposed modification of AR(p) model in the Geman-McClure metric is the most effective and expedient for the long-term prediction (large values of model order p) of strongly correlated processes that can be characterized by the presence of anomalies or deviations at relatively large values of internal parameter of this metric that ensures the speed of calculations in predicting the processes without a significant deterioration of its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. O. I. Pavlov, F. F. Dubrovka, "Evaluation of potential efficiency of speech coding using different parameters of linear prediction," Radioelectron. Commun. Syst., v.63, n.9, p.449 (2020). DOI: https://doi.org/10.3103/S0735272720090010.

    Article  Google Scholar 

  2. R. de Frein, "Power-weighted LPC formant estimation," IEEE Trans. Circuits Syst. II Express Briefs, v.68, n.6, p.2207 (2021). DOI: https://doi.org/10.1109/TCSII.2020.3040194.

    Article  Google Scholar 

  3. C. O. Mawalim, S. Wang, M. Unoki, "Speech information hiding by modification of LSF quantization index in CELP codec," in 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (IEEE, Auckland, New Zealand, 2020). URI: https://ieeexplore.ieee.org/document/9306401.

    Google Scholar 

  4. F. A. Semire, A. J. Adekunle, R. O. Abolade, O. A. Adegbola, "Prediction of rain attenuation trend due to climate change in some locations of Southwestern Nigeria," Radioelectron. Commun. Syst., v.64, n.1, p.45 (2021). DOI: https://doi.org/10.3103/S0735272721010052.

    Article  Google Scholar 

  5. P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods (Springer New York, New York, NY, 1991). DOI: https://doi.org/10.1007/978-1-4419-0320-4.

    Book  MATH  Google Scholar 

  6. D. Ryabko, Asymptotic Nonparametric Statistical Analysis of Stationary Time Series (Springer International Publishing, Cham, 2019). DOI: https://doi.org/10.1007/978-3-030-12564-6.

    Book  MATH  Google Scholar 

  7. G. Kitagawa, Introduction to Time Series Modeling (Chapman and Hall/CRC, New York, 2020). DOI: https://doi.org/10.1201/9780429197963.

    Book  Google Scholar 

  8. V. V. Savchenko, "Method for reduction of speech signal autoregression model for speech transmission systems on low-speed communication channels," Radioelectron. Commun. Syst., v.64, n.11, p.592 (2021). DOI: https://doi.org/10.3103/S0735272721110030.

    Article  Google Scholar 

  9. Y. Zhang, N. Meratnia, P. Havinga, "Outlier detection techniques for wireless sensor networks: a survey," IEEE Commun. Surv. Tutorials, v.12, n.2, p.159 (2010). DOI: https://doi.org/10.1109/SURV.2010.021510.00088.

    Article  Google Scholar 

  10. D. M. Hawkins, Identification of Outliers (Springer Netherlands, Dordrecht, 1980). DOI: https://doi.org/10.1007/978-94-015-3994-4.

    Book  MATH  Google Scholar 

  11. V. Barnett, L. Toby, Outliers in Statistical Data (Wiley, New York, 1994). URI: https://www.wiley.com/en-us/Outliers+in+Statistical+Data%2C+3rd+Edition-p-9780471930945.

    MATH  Google Scholar 

  12. L. Wang, J. Yang, M. Workman, P. Wan, "Effective algorithms to detect stepping-stone intrusion by removing outliers of packet RTTs," Tsinghua Sci. Technol., v.27, n.2, p.432 (2022). DOI: https://doi.org/10.26599/TST.2021.9010041.

    Article  Google Scholar 

  13. L. Zou, Z. Wang, J. Hu, H. Dong, "Ultimately bounded filtering subject to impulsive measurement outliers," IEEE Trans. Autom. Control, v.67, n.1, p.304 (2022). DOI: https://doi.org/10.1109/TAC.2021.3081256.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kumar, M. Yadav, A. Chauhan, "Outlier analysis based intrusion detection for IoT," in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (IEEE, 2021). DOI: https://doi.org/10.1109/ICAC3N53548.2021.9725490.

    Chapter  Google Scholar 

  15. N. Das, R. Bhattacharya, "Optimal sensor precision for multirate sensing for bounded estimation error," IEEE Trans. Aerosp. Electron. Syst., v.58, n.2, p.844 (2022). DOI: https://doi.org/10.1109/TAES.2021.3111726.

    Article  Google Scholar 

  16. A. V. Savchenko, V. V. Savchenko, "Scale-invariant modification of COSH distance for measuring speech signal distortions in real-time mode," Radioelectron. Commun. Syst., v.64, n.6, p.300 (2021). DOI: https://doi.org/10.3103/S0735272721060030.

    Article  Google Scholar 

  17. Y.-R. Feng, X.-C. Wei, L. Ding, T.-H. Song, R. X.-K. Gao, "A hybrid Schatten p -norm and Lp -norm with plane wave expansion method for near–near field transformation," IEEE Trans. Electromagn. Compat., v.63, n.6, p.2074 (2021). DOI: https://doi.org/10.1109/TEMC.2021.3083665.

    Article  Google Scholar 

  18. S. Geman, D. McClure, "Statistical methods for tomographic image reconstruction," in Proceeding of 46th Session of the ICI, Bulletin of the International Statistical Institute (1987).

    Google Scholar 

  19. H. Carfantan, J. Idier, "Statistical linear destriping of satellite-based pushbroom-type images," IEEE Trans. Geosci. Remote Sens., v.48, n.4, p.1860 (2010). DOI: https://doi.org/10.1109/TGRS.2009.2033587.

    Article  Google Scholar 

  20. J. Chen, Z. Cai, X. Xie, J. Lai, "Motion estimation with L0 norm regularization," in 2021 IEEE 7th International Conference on Virtual Reality (ICVR) (IEEE, 2021). DOI: https://doi.org/10.1109/ICVR51878.2021.9483834.

    Chapter  Google Scholar 

  21. E. A. Elsayed, Reliability Engineering (Wiley, NJ, 2020). DOI: https://doi.org/10.1002/9781119665946.

    Book  MATH  Google Scholar 

  22. G. L. Steele, S. Vigna, "Computationally easy, spectrally good multipliers for congruential pseudorandom number generators," Softw. Pract. Exp., v.52, n.2, p.443 (2022). DOI: https://doi.org/10.1002/spe.3030.

    Article  Google Scholar 

  23. J. C. Willems, "Recursive filtering," Stat. Neerl., v.32, n.1, p.1 (1978). DOI: https://doi.org/10.1111/j.1467-9574.1978.tb01382.x.

    Article  MathSciNet  MATH  Google Scholar 

  24. W.-C. Tu, S.-Y. Chien, "Two-way recursive filtering," IEEE Trans. Circuits Syst. Video Technol., v.31, n.11, p.4255 (2021). DOI: https://doi.org/10.1109/TCSVT.2021.3049833.

    Article  Google Scholar 

  25. A. G. Holubnychyi, G. F. Konakhovych, R. S. Odarchenko, "Signal constructions with low resultant sidelobes for pulse compression navigation and radar systems," in 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) (IEEE, 2016). DOI: https://doi.org/10.1109/MSNMC.2016.7783158.

    Chapter  Google Scholar 

  26. A. G. Holubnychyi, G. F. Konakhovych, A. G. Taranenko, Y. I. Gabrousenko, "Comparison of additive and multiplicative complementary sequences for navigation and flight control systems," in 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) (IEEE, 2018). DOI: https://doi.org/10.1109/MSNMC.2018.8576275.

    Chapter  Google Scholar 

  27. A. H. Holubnychyi, G. F. Konakhovych, "Multiplicative complementary binary signal-code constructions," Radioelectron. Commun. Syst., v.61, n.10, p.431 (2018). DOI: https://doi.org/10.3103/S0735272718100011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Holubnychyi.

Ethics declarations

ADDITIONAL INFORMATION

O. Holubnychyi, M. Zaliskyi, O. Shcherbyna, O. Ivanets

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347022090023 with DOI: https://doi.org/10.20535/S0021347022090023

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 8, pp. 496-509, August, 2022 https://doi.org/10.20535/S0021347022090023 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holubnychyi, O., Zaliskyi, M., Shcherbyna, O. et al. Presenting AR Model Error in Terms of Geman-McClure Function for Prediction of Processes in Telecommunications. Radioelectron.Commun.Syst. 65, 420–432 (2022). https://doi.org/10.3103/S0735272722090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272722090023

Navigation