Skip to main content
Log in

Rigid–flexible–thermal coupling dynamics of a hub and multiplate system considering frictional contact

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A geometric nonlinear modeling approach for strong rigid–flexible–thermal coupling dynamics of a hub and multiplate system considering frictional contact is proposed. Based on the absolute nodal coordinate formulation (ANCF), an ANCF thin-plate element with thermoelasticity is developed, where the temperature field is expressed with Taylor polynomials to yield heat-conduction equations. In contrast to the traditional coupling formulations, the influences of the attitude motion and structural deformation on the intensity of the solar radiation, the geometric nonlinearity of the plate as well as the frictional contact are taken into account. The frictional-contact formulations for a thin plate and a rigid body are presented, which can capture the stick–slip transition and address the multiple-point contact scenarios. To solve the strong rigid–flexible–thermal coupling equations, a novel numerical approach combining the generalized-\(\alpha \) method and the modified central-difference method is proposed. Two validations are performed to verify the proposed model, which proves the importance of considering the geometric nonlinearity and reveals the phenomena of thermally induced vibrations. Then, the thermal–dynamic coupling analysis for the satellite and solar-array multibody system in a thermal environment is carried out. The dynamic characteristics of the thermally induced vibration can be successfully revealed by the rigid–flexible–thermal coupling model. Furthermore, it is indicated that the influence of contact and thermal load on the nonlinear behavior of the solar-array deployment is essential, which demonstrates the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Thornton, E.A., Kim, Y.A.: Thermally induced bending vibrations of a flexible rolled-up solar array. J. Spacecr. Rockets 30(4), 438–448 (1993)

    Google Scholar 

  2. Johnston, J.D., Thornton, E.A.: Thermally induced attitude dynamics of a spacecraft with a flexible appendage. J. Guid. Control Dyn. 21(4), 581–587 (1998)

    Google Scholar 

  3. Johnston, J.D., Thornton, E.A.: Thermally induced dynamics of satellite solar panels. J. Spacecr. Rockets 37(5), 604–613 (2000)

    Google Scholar 

  4. Fan, W., Liu, J.: Geometric nonlinear formulation for thermal-rigid-flexible coupling system. Acta Mech. Sin. 29(5), 728–737 (2013)

    MathSciNet  Google Scholar 

  5. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)

    Google Scholar 

  6. Shen, Z., Hu, G.: Thermally induced dynamics of a spinning spacecraft with an axial flexible boom. J. Spacecr. Rockets 52, 1503–1508 (2015)

    Google Scholar 

  7. Shen, Z., Hu, G.: Thermoelastic–structural analysis of space thin-walled beam under solar flux. AIAA J. 57(4), 1781–1785 (2019)

    Google Scholar 

  8. Čepon, G., Starc, B., Zupančič, B., Boltežar, M.: Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation. Multibody Syst. Dyn. 41(4), 391–402 (2017)

    MathSciNet  Google Scholar 

  9. Liu, L., Sun, S., Cao, D., Liu, X.: Thermal-structural analysis for flexible spacecraft with single or double solar panels: a comparison study. Acta Astronaut. 154, 33–43 (2019)

    Google Scholar 

  10. Liu, L., Cao, D., Huang, H., Shao, C., Xu, Y.: Thermal-structural analysis for an attitude maneuvering flexible spacecraft under solar radiation. Int. J. Mech. Sci. 126, 161–170 (2017)

    Google Scholar 

  11. Liu, L., Wang, X., Sun, S., Cao, D., Liu, X.: Dynamic characteristics of flexible spacecraft with double solar panels subjected to solar radiation. Int. J. Mech. Sci. 151, 22–32 (2019)

    Google Scholar 

  12. Li, Y., Wang, C., Huang, W.: Rigid–flexible–thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller. Nonlinear Dyn. 96(3), 2031–2053 (2019)

    Google Scholar 

  13. Liu, J., Pan, K.: Rigid–flexible–thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp. Sci. Technol. 52, 102–114 (2016)

    Google Scholar 

  14. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    MathSciNet  Google Scholar 

  15. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Google Scholar 

  16. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 041012 (2008)

    Google Scholar 

  17. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  18. Ren, H.: Fast and robust full-quadrature triangular elements for thin plates/shells with large deformations and large rotations. J. Comput. Nonlinear Dyn. 10(5), 051018 (2015)

    Google Scholar 

  19. Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA (2007)

    Google Scholar 

  20. Vaziri Sereshk, M., Salimi, M.: Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int. J. Numer. Methods Biomed. Eng. 27(8), 1185–1198 (2011)

    MathSciNet  Google Scholar 

  21. Hyldahl, P., Mikkola, A.M., Balling, O., Sopanen, J.T.: Behavior of thin rectangular ANCF shell elements in various mesh configurations. Nonlinear Dyn. 78(2), 1277–1291 (2014)

    Google Scholar 

  22. Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012)

    MathSciNet  Google Scholar 

  23. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

    Google Scholar 

  24. Liu, C., Tian, Q., Yan, D., Hu, H.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    MathSciNet  Google Scholar 

  25. Shen, Z., Hu, G.: Thermally induced vibrations of solar panel and their coupling with satellite. Int. J. Appl. Mech. 5, 1350031 (2013)

    Google Scholar 

  26. Cui, Y., Yu, Z., Lan, P.: A novel method of thermo-mechanical coupled analysis based on the unified description. Mech. Mach. Theory 134, 376–392 (2019)

    Google Scholar 

  27. Cui, Y., Lan, P., Zhou, H., Yu, Z.: The rigid–flexible–thermal coupled analysis for spacecraft carrying large-aperture paraboloid antenna. J. Comput. Nonlinear Dyn. 15(3), 031003 (2020)

    Google Scholar 

  28. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Google Scholar 

  29. Konyukhov, A., Izi, R.: Introduction to Computational Contact Mechanics: A Geometrical Approach. Wiley, Chichester (2015)

    Google Scholar 

  30. Flores, P.: Contact mechanics for dynamical systems: a comprehensive review. Multibody Syst. Dyn. 54(2), 127–177 (2022)

    MathSciNet  Google Scholar 

  31. Flores, P.: Contact mechanics for dynamical systems: a comprehensive review. Multibody Syst. Dyn. 54(2), 127–177 (2022). https://doi.org/10.1007/s11044-021-09803-y

    Article  MathSciNet  Google Scholar 

  32. Konyukhov, A., Schweizerhof, K.: Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies. Springer, Berlin (2013)

    Google Scholar 

  33. Schweizerhof, K., Konyukhov, A.: Covariant description for frictional contact problems. Comput. Mech. 35, 190–213 (2005)

    Google Scholar 

  34. Yu, L., Zhao, Z., Tang, J., Ren, G.: Integration of absolute nodal elements into multibody system. Nonlinear Dyn. 62(4), 931–943 (2010)

    MathSciNet  Google Scholar 

  35. Shi, J., Liu, Z., Hong, J.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)

    MathSciNet  Google Scholar 

  36. Sun, D., Liu, C., Hu, H.: Dynamic computation of 2D segment-to-segment frictionless contact for a flexible multibody system subject to large deformation. Mech. Mach. Theory 140, 350–376 (2019)

    Google Scholar 

  37. Sun, D., Liu, C., Hu, H.: Dynamic computation of 2D segment-to-segment frictional contact for a flexible multibody system subject to large deformations. Mech. Mach. Theory 158, 104197 (2021)

    Google Scholar 

  38. Gay Neto, A., Wriggers, P.: Master-master frictional contact and applications for beam-shell interaction. Comput. Mech. 66(6), 1213–1235 (2020)

    MathSciNet  Google Scholar 

  39. Tang, L., Liu, J.: Frictional contact analysis of sliding joints with clearances between flexible beams and rigid holes in flexible multibody systems. Multibody Syst. Dyn. 49(2), 155–179 (2019)

    MathSciNet  Google Scholar 

  40. Lei, B., Ma, Z., Liu, J., Liu, C.: Dynamic modelling and analysis for a flexible brush sampling mechanism. Multibody Syst. Dyn. 56(4), 335–365 (2022)

    Google Scholar 

  41. Yuan, T., Liu, Z., Zhou, Y., Liu, J.: Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody Syst. Dyn. 50(1), 1–24 (2020)

    MathSciNet  Google Scholar 

  42. Yuan, T., Tang, L., Liu, Z., Liu, J.: Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction. Nonlinear Dyn. 106(3), 1789–1822 (2021)

    Google Scholar 

  43. Boley, B., Weiner, J.: Theory of Thermal Stresses. Dover Civil and Mechanical Engineering Series. Dover, New York (1960)

    Google Scholar 

  44. Hetnarski, R.B.M.: Thermal Stresses – Advanced Theory and Applications. Solid Mechanics and Its Applications. Springer, Dordrecht (2008)

    Google Scholar 

  45. Eslami, M., Hetnarski, R., Ignaczak, J., Noda, N., Sumi, N., Tanigawa, Y.: Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions. Springer, Dordrecht (2013)

    Google Scholar 

  46. Liu, J., Lu, H.: Thermal effect on the deformation of a flexible beam with large kinematical driven overall motions. Eur. J. Mech. A, Solids 26(1), 137–151 (2007)

    Google Scholar 

  47. Yuan, T., Tang, L., Liu, J.: Dynamic modeling and analysis for inflatable mechanisms considering adhesion and rolling frictional contact. Mech. Mach. Theory 184, 105295 (2023)

    Google Scholar 

  48. Tang, L., Liu, J.: Modeling and analysis of sliding joints with clearances in flexible multibody systems. Nonlinear Dyn. 94(4), 2423–2440 (2018)

    Google Scholar 

  49. Wang, X.: Finite Element Method. Tsinghua University Press, Beijing (2003)

    Google Scholar 

  50. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn & Bacon, Boston (1989)

    Google Scholar 

  51. Hong, J.: Computational Dynamics of Multibody Systems. Higher Education Press, Beijing (1999)

    Google Scholar 

  52. Liu, Z., Liu, J.: Experimental validation of rigid-flexible coupling dynamic formulation for hub–beam system. Multibody Syst. Dyn. 40(3), 303–326 (2017)

    MathSciNet  Google Scholar 

  53. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    MathSciNet  Google Scholar 

  54. Köbis, M., Arnold, M.: Convergence of generalized-\(\boldsymbol{\alpha}\) time integration for nonlinear systems with stiff potential forces. Multibody Syst. Dyn. 37(1), 107–125 (2016)

    MathSciNet  Google Scholar 

  55. Noels, L., Stainier, L., Ponthot, J.P.: Self-adapting time integration management in crash-worthiness and sheet metal forming computations. Int. J. Veh. Des. 30(1–2), 67–114 (2002)

    Google Scholar 

Download references

Funding

This research was supported by the General Program (No. 12272221) of the National Natural Science Foundation of China , the Key Program (No. 11932001) of the National Natural Science Foundation of China, and the International (Regional) Cooperation and Exchange Programs (No. 12311530038) of the National Natural Science Foundation of China, for which the authors are grateful. This research was also supported by the Key Laboratory of Hydrodynamics (Ministry of Education).

Author information

Authors and Affiliations

Authors

Contributions

Tingting Yuan proposed the conceptualization and methodology of this study, and performed simulation and analysis, and wrote the main manuscript text. Bo Lei performed the valication and the data analysis. Jinyang Liu helped perform the formulations and analysis with constructive discussion. Yunli Wu helped perform simulation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jinyang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Solution scheme for the rigid–flexible–thermal coupling equations

Appendix. Solution scheme for the rigid–flexible–thermal coupling equations

The solution scheme for the rigid–flexible–thermal coupling equations is divided into the following three steps:

  • Step1: Prediction of the initial value

Assuming that \(\ddot{\mathbf{q}}_{d}^{t + \Delta t} = \mathbf{0}\), we combine Taylor’s formula, the generalized-\(\alpha \) method, and a modified central-difference method to predict \(\mathbf{a}_{d}^{t + \Delta t}\), \(\mathbf{q}_{d}^{t + \Delta t}\), \(\dot{\mathbf{q}}_{d}^{t + \Delta t}\), \(\boldsymbol{\lambda}^{t + \Delta t}\), \(\mathbf{p}^{t + \Delta t}\), as follows:

$$ \mathbf{a}_{d}^{t + \Delta t} = \frac{\alpha _{f}}{1 - \alpha _{m}}\ddot{\mathbf{q}}_{d}^{t} - \frac{\alpha _{m}}{1 - \alpha _{m}}\mathbf{a}_{d}^{t}, $$
(56)
$$ \mathbf{q}_{d}^{t + \Delta t} = \mathbf{q}_{d}^{t} + \Delta t\dot{\mathbf{q}}_{d}^{t} + \Delta t^{2}\left ( 0.5 - \beta \right )\mathbf{a}_{d}^{t} + \Delta t^{2}\beta \mathbf{a}_{d}^{t + \Delta t}, $$
(57)
$$ \dot{\mathbf{q}}_{d}^{t + \Delta t} = \dot{\mathbf{q}}_{d}^{t} + \Delta t\left ( 1 - \gamma \right )\mathbf{a}_{d}^{t} + \Delta t\gamma \mathbf{a}_{d}^{t + \Delta t}, $$
(58)
$$ \boldsymbol{\lambda}^{t + \Delta t} = \boldsymbol{\lambda}^{t}, $$
(59)
$$ \mathbf{p}^{t + \Delta t} = \theta \mathbf{p}^{t + \Delta t} + \left ( 1 - \theta \right )\mathbf{p}^{t}, $$
(60)

where

$$ \alpha _{m} = \frac{2\rho _{\infty} - 1}{\rho _{\infty} + 1},\quad \alpha _{f} = \frac{\rho _{\infty}}{\rho _{\infty} + 1}, $$
(61)
$$ \gamma = 0.5 + \alpha _{f} - \alpha _{m},\quad \beta = 0.25 \left ( \gamma + 0.5 \right )^{2}, $$
(62)

and the numerical parameters \(\rho _{\infty}, \theta \in [0, 1]\). The numerical parameters in this paper are taken as \(\rho _{\infty} = 0.6\), \(\theta = 0.5\).

  • Step2: Transformation into nonlinear algebraic equations

The dynamic equations can be transformed into nonlinear algebraic equations using the generalized-\(\alpha \) method [53]

$$ \left [ \textstyle\begin{array}{c} \mathbf{M}_{d}\ddot{\mathbf{q}}_{d}^{t + \Delta t} + \mathbf{C}_{d}\dot{\mathbf{q}}_{d}^{t + \Delta t} + \boldsymbol{\Phi}_{\mathbf{q}_{d}}^{\mathrm{T}}\left ( \mathbf{q}_{d}^{t + \Delta t} \right )\boldsymbol{\lambda}^{t + \Delta t} - \mathbf{Q}_{d}(\mathbf{q}_{d}^{t + \Delta t},\mathbf{p}^{t + \Delta t}) \\ \boldsymbol{\Phi} (\mathbf{q}_{d}^{t + \Delta t},t + \Delta t) \end{array}\displaystyle \right ] = \mathbf{0}, $$
(63)

where

$$ \frac{\partial \ddot{\mathbf{q}}_{d}^{t + \Delta t}}{\mathbf{q}_{d}^{t + \Delta t}} = \beta ' \mathbf{I},\quad \frac{\partial \dot{\mathbf{q}}_{d}^{t + \Delta t}}{\mathbf{q}_{d}^{t + \Delta t}} = \gamma ' \mathbf{I}, $$
(64)
$$ \beta ' = \frac{1 - \alpha _{m}}{\left ( 1 - \alpha _{f} \right )\beta \Delta t^{2}},\quad \gamma ' = \frac{\gamma}{\beta \Delta t}. $$
(65)

The heat-conduction equations in Eq. (48) are transformed into nonlinear algebraic equations by a modified central-difference method [49]

$$ \bar{\mathbf{K}} \mathbf{p}^{t + \Delta t} - \bar{\mathbf{Q}}(\mathbf{q}_{d}^{t + \Delta t},\mathbf{p}^{t + \Delta t}) = \mathbf{0}, $$
(66)

where

$$ \bar{\mathbf{K}} = \frac{\mathbf{M}_{T}}{\Delta t} + \theta \mathbf{K}_{T}, $$
(67)
$$ \bar{\mathbf{Q}} = \left [ \frac{\mathbf{M}_{T}}{\Delta t} - \left ( 1 - \theta \right ) \mathbf{K}_{T} \right ]\mathbf{p}^{t} + \left ( 1 - \theta \right )\mathbf{F}_{T}^{t} + \theta \mathbf{F}_{T}^{t + \Delta t}. $$
(68)
  • Step3: Solution of the combined nonlinear algebraic equations

According to Eqs. (A8) and (A11), the combined nonlinear algebraic equations are rewritten as

$$ \textstyle\begin{array}{l} \boldsymbol{\Psi} \left ( \mathbf{q}_{d}^{t + \Delta t},\mathbf{p}^{t + \Delta t},\boldsymbol{\lambda}^{t + \Delta t},t + \Delta t \right ) \\ = \left [ \textstyle\begin{array}{c} \mathbf{M}_{d}\ddot{\mathbf{q}}_{d}^{t + \Delta t} + \mathbf{C}_{d}\dot{\mathbf{q}}_{d}^{t + \Delta t} + \boldsymbol{\Phi}_{\mathbf{q}_{d}}^{\mathrm{T}}\left ( \mathbf{q}_{d}^{t + \Delta t} \right )\boldsymbol{\lambda}^{t + \Delta t} - \mathbf{Q}_{d}(\mathbf{q}_{d}^{t + \Delta t},\mathbf{p}^{t + \Delta t}) \\ \boldsymbol{\Phi} (\mathbf{q}_{d}^{t + \Delta t},t + \Delta t) \\ \bar{\mathbf{K}} \mathbf{p}^{t + \Delta t} - \bar{\mathbf{Q}}(\mathbf{q}_{d}^{t + \Delta t},\mathbf{p}^{t + \Delta t}) \end{array}\displaystyle \right ] = \mathbf{0}. \end{array} $$
(69)

The Newton–Raphson algorithm is used to find a solution of Eq. (A14). At an iteration step \(k\), the following equation is solved for a correction \(\Delta \mathbf{q}_{(k)}^{t + \Delta t}\):

$$ \Delta \mathbf{q}_{(k)}^{t + \Delta t} = \left [ \textstyle\begin{array}{c} \Delta \mathbf{p}_{(k)}^{t + \Delta t} \\ \Delta \mathbf{q}_{d(k)}^{t + \Delta t} \\ \Delta \boldsymbol{\lambda}_{(k)}^{t + \Delta t} \end{array}\displaystyle \right ] = - \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c}\displaystyle \frac{\partial \boldsymbol{\Psi}}{\partial \mathbf{p}^{t + \Delta t}} & \displaystyle\frac{\partial \boldsymbol{\Psi}}{\partial \mathbf{q}_{d}^{t + \Delta t}} &\displaystyle \frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{\lambda}^{t + \Delta t}} \end{array}\displaystyle \right ]^{ - 1}\boldsymbol{\Psi}, $$
(70)

where

$$ \frac{\partial \boldsymbol{\Psi}}{\partial \mathbf{p}^{t + \Delta t}} = \left [ \textstyle\begin{array}{c}\displaystyle - \frac{\partial \mathbf{Q}_{d}(\mathbf{q}_{d(k)}^{t + \Delta t},\mathbf{p}_{(k)}^{t + \Delta t})}{\partial \mathbf{p}^{t + \Delta t}} \\ \mathbf{0} \\ \displaystyle\bar{\mathbf{K}} - \frac{\partial \bar{\mathbf{Q}}(\mathbf{q}_{d(k)}^{t + \Delta t},\mathbf{p}_{(k)}^{t + \Delta t})}{\partial \mathbf{p}^{t + \Delta t}} \end{array}\displaystyle \right ], $$
(71)
$$ \frac{\partial \boldsymbol{\Psi}}{\partial \mathbf{q}_{d}^{t + \Delta t}} = \left [ \textstyle\begin{array}{c}\displaystyle \alpha '\mathbf{M}_{d} + \beta '\mathbf{C}_{d} + \frac{\partial \left ( \boldsymbol{\Phi}_{\mathbf{q}_{d}}^{\mathrm{T}}\left ( \mathbf{q}_{d(k)}^{t + \Delta t} \right )\boldsymbol{\lambda}_{(k)}^{t + \Delta t} \right )}{\partial \mathbf{q}_{d}^{t + \Delta t}} - \frac{\partial \left ( \mathbf{Q}_{d}(\mathbf{q}_{d(k)}^{t + \Delta t},\mathbf{p}_{(k)}^{t + \Delta t}) \right )}{\partial \mathbf{q}_{d}^{t + \Delta t}} \\ \boldsymbol{\Phi}_{\mathbf{q}_{d}}\left ( \mathbf{q}_{d(k)}^{t + \Delta t} \right ) \\ \displaystyle- \frac{\partial \bar{\mathbf{Q}}(\mathbf{q}_{d(k)}^{t + \Delta t},\mathbf{p}_{(k)}^{t + \Delta t})}{\partial \mathbf{q}_{d}^{t + \Delta t}} \end{array}\displaystyle \right ], $$
(72)
$$ \frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{\lambda}^{t + \Delta t}} = \left [ \textstyle\begin{array}{c}\displaystyle \boldsymbol{\Phi}_{\mathbf{q}_{d}}^{\mathrm{T}}\left ( \mathbf{q}_{d(k)}^{t + \Delta t} \right ) \\ \mathbf{0} \\ \mathbf{0} \end{array}\displaystyle \right ]. $$
(73)

An improved estimate can be obtained as

$$ \mathbf{q}_{(k + 1)}^{t + \Delta t} = \mathbf{q}_{(k)}^{t + \Delta t} + \Delta \mathbf{q}_{(k)}^{t + \Delta t},\quad k = 0, 1,\ldots, $$
(74)

until the precision condition \(\left \| \Delta \mathbf{q}_{(k)}^{t + \Delta t} \right \| \le \delta \) is satisfied, in which \(\delta \) is the precision error.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Lei, B., Liu, J. et al. Rigid–flexible–thermal coupling dynamics of a hub and multiplate system considering frictional contact. Multibody Syst Dyn 59, 363–394 (2023). https://doi.org/10.1007/s11044-023-09925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09925-5

Keywords

Navigation