Skip to main content
Log in

The effect of alkyl substituents in the β-side on the conformation, molecular structure, and copper-oxygen bond strength of bis(β-diketonato)copper(II) complexes by DFT results and experimental vibrational and UV spectra

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The conformation, geometry, and relative energies of bis (2,6-dimethylheptane-3,5-dionato)copper(II), (Cu(DIMHD)2), and bis (5,5-dimethylhexane-2,4-dionato)copper(II), Cu(DMHD)2 have been assayed through using calculated results from atoms-in-molecules (AIM) analysis, time-dependent density functional theory (TD-DFT), natural bond orbital (NBO), and density functional theory (DFT). The electronic and vibrational spectra of these compounds have also been studied using experimental infrared, Raman, and ultraviolet (UV) spectra. All theoretical and empirical vibrational frequencies of the mentioned compounds have been assigned. The DFT was used to characterize the conformers of the complexes mentioned above, as well as the observed vibrational and UV spectra. Similar complexes, including copper (II) acetylacetonate Cu(AA)2, bis(3,5-heptanedionato)copper(II) (Cu(HPD)2), and copper (II) 2,2,6,6-tetramethylheptane-3,5-dionate (Cu(TMHD)2), have been chosen to evaluate the influence of isopropyl (iPr) and tert-Butyl (t-Bu) groups substituents instead of methyl and ethyl groups. All experimental, spectroscopic, and DFT results confirmed that the O-Cu bond strength in Cu(DIMHD)2 and Cu(DMHD)2 is between Cu(TMHD)2 and Cu(AA)2 and close to Cu(HPD)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Aiga F, Iwanaga H, Amano A (2005) Density functional theory investigation of Eu (III) complexes with β-diketonates and phosphine oxides: model complexes of fluorescence compounds for ultraviolet led devices. J Phys Chem A 109(49):11312–11316

    Article  CAS  PubMed  Google Scholar 

  2. Khamidullina LA, Puzyrev IS, Glukhareva TV, Shatunova SA, Slepukhin PA, Dorovatovskii PV, Zubavichus YV, Khrustalev VN, Fan Z, Kalinina TA, Pestov AV (2019) Synthesis, characterization, DFT calculations, and biological activity of copper(II) complexes with 1,1,1-trifluoro-4-(2-methoxyphenyl)butan-2,4-dione. J Mol Struct 1176:515–528

    Article  CAS  Google Scholar 

  3. Zhang K, Zhao X, Liu J, Fang X, Wang X, Wang X, Li R (2014) β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells. Oncol Lett 7:881–885

    Article  CAS  PubMed  Google Scholar 

  4. Wenzel TJ, Williams EJ, Haltiwanger RC, Sievers RE (1985) Studies of metal chelates with the novel ligand 2, 2, 7-trimethyl-3, 5-octanedione. Polyhedron 4(3):369–378

    Article  CAS  Google Scholar 

  5. Sievers RE, Sadlowski JE (1978) Volatile metal complexes: certain chelates are useful as fuel additives, as metal vapor sources, and in trace metal analysis. Science 201(4352):217–223

    Article  CAS  PubMed  Google Scholar 

  6. Ndwandwe S, Tshibangu P, Dikio ED (2011) Synthesis of carbon nanospheres from vanadium β-diketonate catalyst. Int J Electrochem Sci 6:749–760

    Article  CAS  Google Scholar 

  7. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mononuclear complexes of the copper (II) ion. Coord Chem Rev 5(2):143–207

    Article  CAS  Google Scholar 

  8. Nakamoto K (2000) Infrared and raman spectra of inorganic and coordination compounds, part b: applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. Wiley-Interscience, New York

    Google Scholar 

  9. Hema MK, Karthik CS, Pampa KJ, Mallu P, Lokanath NK (2021) 4,4,4-trifluoro-1-phenylbutane-1,3-dione metal [Cu(II) and Ni(II)] complexes as superlative antibacterial agent against MRSA: Synthesis, structural quantum-chemical and molecular docking studies. J Mol Struct 1243:130774

    Article  CAS  Google Scholar 

  10. Conradie MM, Conradie J (2014) Electrochemical behaviour of Tris(β-diketonato)iron(III) complexes: A DFT and experimental study. Electrochim Acta 152:512–519

    Article  Google Scholar 

  11. Fahlman BD, Barron AR (2000) Substituent effects on the volatility of metal β diketonates. Adv mater Opt electron 10(3–5):223–232

    Article  CAS  Google Scholar 

  12. Schwarberg JE, Sievers RE, Moshier RW (1970) Gas chromatographic and related properties of the alkaline earth chelates with 2, 2, 6, 6-tetramethyl-3, 5-heptanedione. Anal Chem 42(14):1828–1830

    Article  CAS  Google Scholar 

  13. Chinthala CP, Angappan S (2017) Effect of solvent coordination on the structure of β-diketone based vanadyl complexes and assessment of in vitro anti-diabetic activity and cytotoxicity. Appl Organomet Chem p e3700

  14. Mikami M, Nakagawa I, Shimanouchi T (1967) Far infra-red spectra and metal-ligand force constants of acetylacetonates of transition metals. Spectrochim Acta A Mol Spectrosc 23(4):1037–1053

    Article  Google Scholar 

  15. Nakamoto K, Martell AE (1960) Infrared spectra of metal chelate compounds. I. a normal coordinate treatment on Bis-(Acetylacetonato) Cu (II). J Chem Phys 32(2):588–597

    Article  CAS  Google Scholar 

  16. Sayyar Z, Vakili M, Kanaani A, Vakili SS, Eshghi H (2021) Molecular structure, hydrogen bond strength, and infrared Fourier transform vibrational assignment of 2, 6-dimethylheptane-3, 5-dione. J Mol Struct 1243:130803

    Article  CAS  Google Scholar 

  17. Seyedkatouli S, Vakili M, Tayyari SF, Afzali R (2018) Molecular structure, spectroscopic studies, and copper oxygen bond strength of α-methyl and α-ethyl derivatives of copper (II) acetylacetonate; Experimental and theoretical approach. J Mol Struct 1160:107–116

    Article  CAS  Google Scholar 

  18. Vakili M, Tayyari SF, Hakimi-Tabar M, Nekoei AR, Kadkhodaei S (2014) Structure and vibrational assignment of bis (benzoylacetonato) copper (II). J Mol Struct 1058:308–317

    Article  CAS  Google Scholar 

  19. Nekoei AR, Vakili M, Hakimi-Tabar M, Tayyari SF, Afzali R, Kjaergaard HG (2014) Theoretical study, and infrared and Raman spectra of copper (II) chelated complex with dibenzoylmethane. Spectrochim Acta A Mol Biomol Spectrosc 128:272–279

    Article  CAS  PubMed  Google Scholar 

  20. Vakili M, Tayyari SF, Afzali R (2015) Conformation, molecular structure, and vibrational assignment of bis (2, 2, 6, 6-tetramethylheptane-3, 5-dionato) copper (II). Spectrochim Acta A Mol Biomol Spectrosc 136:1827–1833

    Article  CAS  PubMed  Google Scholar 

  21. Soltani-Ghockhaneh S, Vakili M, Tayyari SF, Berenji AR, Darugar V (2019) Conformation, molecular structure, and vibrational assignment of bis (3, 5-heptanedionato) copper (II). J Mol Struct 1197:443–449

    Article  CAS  Google Scholar 

  22. Afzali R, Vakili M, Darugar V (2021) Isomerism, conformation, and structure of Bis (4, 4-dimethyl-1-phenylpentane-1, 3-dionato) copper (II); A theoretical and spectroscopy approach. J Mol Struct 1227:129711–129715

    Article  CAS  Google Scholar 

  23. Conradie J, Erasmus E (2022) XPS photoelectron lines, satellite structures and Wagner plot of Cu(II) β-diketonato complexes explained in terms of its electronic environment. J Electron Spectrosc Relat Phenom 259:147241

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, et al. (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT.

  25. Becke AD (1993) Becke’s three-parameter hybrid method using the LYP correlation functional. J Chem Phys 98(492):5648–5652

    Article  CAS  Google Scholar 

  26. Hay PJ (1977) Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition metal atoms. J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) Ab Initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  28. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  29. Dennington TKR, Millam J (2009) GaussView, Version 5. Semichem Inc, Shawnee Mission KS

    Google Scholar 

  30. Biegler-König FW, Schönbohm J, Bayles D (2001) Software news and updates AIM2000. J Comp Chem 22:545–559

    Google Scholar 

  31. Weisskopf VF (1975) of atoms, mountains, and stars: a study in qualitative physics. Science 187(4177):605–612

    Article  CAS  PubMed  Google Scholar 

  32. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  33. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO, version 5.0. Theoretical Chemistry Institute, University of Wisconsin: Madison.

  34. Leeuwen RV (2001) Key concepts in time-dependent density-functional theory. Int J Mod Phys B 15(14):1969–2023

    Article  Google Scholar 

  35. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. a direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  36. Barone V, Improta R, Morelli G, Santoro F (2007) UV-vis spectra of p-benzoquinone anion radical in solution by a TD-DFT/PCM approach. Theor Chem Acc 118:143–148

    Article  CAS  Google Scholar 

  37. Moeller T (1957) Inorganic syntheses, vol 5. Book Co., Inc., New York, McGraw-Hill, p 108

    Google Scholar 

  38. Gromilov SA, Baidina IA (2004) Regularities of crystal structures of Cu (II) β-diketonates. J Struct Chem 45:1031–1081

    Article  CAS  Google Scholar 

  39. Golchoubian H (2008) Asian J Chem 20:5834–5838

    CAS  Google Scholar 

  40. Emamian S, Tayyari SF (2013) Theoretical study of intramolecular hydrogen bonding in the halo derivatives of 1-amino-3-imino-prop-1-ene. J Chem Sci 125:939–948

    Article  CAS  Google Scholar 

  41. Zahedi-Tabrizi M, Tayyari SF, Badalkhani-Khamseh F, Ghomi R, Afshar-Qahremani F (2014) Molecular structure and intramolecular hydrogen bonding in 2-hydroxybenzophenones: a theoretical study. J Chem Sci 126:919–929

    Article  CAS  Google Scholar 

  42. Fakheri H, Tayyari SF, Heravi MM, Morsali A (2017) Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates. J Mol Struct 1150:340–348

    Article  CAS  Google Scholar 

  43. Fatima A, Bhadoria J, Srivastava SK, Verma I, Siddiqui N, Javed S (2021) Exploration of experimental and theoretical properties of 5,5-dimethyl 3-aminocyclohex-2-en-1-one (AMINE DIMEDONE) by DFT/TD-DFT with ethanol and DMSO as solvents and molecular docking studies. J Mol Liq 338:116551

    Article  CAS  Google Scholar 

  44. David L, Crăciun C, Cozar O, Chiş V, Agut C, Rusu D, Rusu M (2001) Spectroscopic studies of some oxygen-bonded copper (II) β-diketonate complexes. J Mol Struct 563:573–578

    Article  Google Scholar 

  45. Layek S, Kumari S, Anuradha AB, Ganguly R, Pathak DD (2016) Synthesis, characterization and crystal structure of a diketone based Cu(II) complex and its catalytic activity for the synthesis of 1,2,3-triazoles. Inorganica Chim Acta 453:735–741

    Article  CAS  Google Scholar 

  46. Tayyari SF, Bakhshi T, Mahdizadeh SJ, Mehrani S, Sammelson RE (2009) Structure and vibrational assignment of magnesium acetylacetonate: a density functional theoretical study. J Mol Struct 938:76–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad (project number 45085) is gratefully acknowledged.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

M. H-T. helped in conceptualization and data curation; M. V. contributed to supervision, review, and editing; V. D. Advisor was involved in writing original draft preparation; M. A. Advisor was involved in review and editing final draft; S. F. T. Advisor was involved in review and editing; M. R. H. was involved in supervision, review, and editing; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammad Vakili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakimi-Tabar, M., Vakili, M., Darugar, V. et al. The effect of alkyl substituents in the β-side on the conformation, molecular structure, and copper-oxygen bond strength of bis(β-diketonato)copper(II) complexes by DFT results and experimental vibrational and UV spectra. Transit Met Chem 48, 315–329 (2023). https://doi.org/10.1007/s11243-023-00545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00545-8

Navigation