Skip to main content
Log in

Balancing at the edge of excitability: implications for cell movement

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Cells rely on the ability to sense and respond to small spatial differences in chemoattractant concentrations for survival. There is growing evidence that this is accomplished by setting the signaling system near the threshold for activation in an excitable system and using the spatial heterogeneities to alter the threshold, thereby biasing cell activity in the direction of the gradient. Here we consider a scheme by which the set point is adaptively set near the bifurcation point, but without explicit knowledge of this point. Through simulation, we show that the method would improve chemotactic efficiency of cells. The results of this paper are based on pioneering work by Eduardo Sontag and coworkers, to whom this paper is dedicated in honor of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen S-Y, Sharabi AB (2019) A threshold model for t-cell activation in the era of checkpoint blockade immunotherapy. Front Immunol 10:491. https://doi.org/10.3389/fimmu.2019.00491

    Article  Google Scholar 

  2. Bene L, Bagdány M, Damjanovich L (2020) Adaptive threshold-stochastic resonance (AT-SR) in MHC clusters on the cell surface. Immunol Lett 217:65–71. https://doi.org/10.1016/j.imlet.2019.11.006

    Article  Google Scholar 

  3. Narni-Mancinelli E, Ugolini S, Vivier E (2013) Tuning the threshold of natural killer cell responses. Curr Opin Immunol 25(1):53–58. https://doi.org/10.1016/j.coi.2012.11.005

    Article  Google Scholar 

  4. Hudspeth AJ (2014) Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 15(9):600–614. https://doi.org/10.1038/nrn3786

    Article  Google Scholar 

  5. Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of \(\text{ Ca}^{2+}\) to mechanoelectrical-transduction channels. Proc Natl Acad Sci USA 95(26):15321–15326. https://doi.org/10.1073/pnas.95.26.15321

    Article  Google Scholar 

  6. Camalet S, Duke T, Jülicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97(7):3183–3188. https://doi.org/10.1073/pnas.97.7.3183

    Article  Google Scholar 

  7. Eguíluz VM, Ospeck M, Choe Y, Hudspeth AJ, Magnasco MO (2000) Essential nonlinearities in hearing. Phys Rev Lett 84(22):5232–5235. https://doi.org/10.1103/PhysRevLett.84.5232

    Article  Google Scholar 

  8. Jackson Z, Wiesenfeld K (2019) Dynamics of tinnitus and coordinated reset therapy. Phys Rev E 99(5–1):052403. https://doi.org/10.1103/PhysRevE.99.052403

    Article  MathSciNet  Google Scholar 

  9. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284(5415):765–770. https://doi.org/10.1126/science.284.5415.765

    Article  Google Scholar 

  10. van Haastert PJM, Postma M (2007) Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys J 93(5):1787–1796. https://doi.org/10.1529/biophysj.107.104356

    Article  Google Scholar 

  11. Vicker MG (2002) Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. Exp Cell Res 275(1):54–66. https://doi.org/10.1006/excr.2001.5466

    Article  Google Scholar 

  12. Xiong Y, Huang C-H, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci USA 107(40):17079–17086. https://doi.org/10.1073/pnas.1011271107

    Article  Google Scholar 

  13. Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107(2):165–181

    Article  Google Scholar 

  14. Bhattacharya S, Iglesias PA (2018) The threshold of an excitable system serves as a control mechanism for noise filtering during chemotaxis. PLoS ONE 17(3):0201283. https://doi.org/10.1371/journal.pone.0201283

    Article  Google Scholar 

  15. Bhattacharya S, Iglesias PA (2019) Controlling excitable wave behaviors through the tuning of three parameters. Biol Cybern 113(1–2):61–70. https://doi.org/10.1007/s00422-018-0771-0

    Article  MathSciNet  Google Scholar 

  16. Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA, Devreotes PN (2017) Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat Cell Biol 19(4):329–340. https://doi.org/10.1038/ncb3495

    Article  Google Scholar 

  17. Zhan H, Bhattacharya S, Cai H, Iglesias PA, Huang C-H, Devreotes PN (2020) An excitable Ras/PI3K/ERK signaling network controls migration and oncogenic transformation in epithelial cells. Dev Cell 54(5):608–6235. https://doi.org/10.1016/j.devcel.2020.08.001

    Article  Google Scholar 

  18. Westendorf C, Negrete J Jr, Bae AJ, Sandmann R, Bodenschatz E, Beta C (2013) Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. Proc Natl Acad Sci USA 110(10):3853–3858. https://doi.org/10.1073/pnas.1216629110

    Article  Google Scholar 

  19. Huang C-H, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 15(11):1307–1316. https://doi.org/10.1038/ncb2859

    Article  Google Scholar 

  20. Miao Y, Bhattacharya S, Banerjee T, Abubaker-Sharif B, Long Y, Inoue T, Iglesias PA, Devreotes PN (2019) Wave patterns organize cellular protrusions and control cortical dynamics. Mol Syst Biol 15(3):8585. https://doi.org/10.15252/msb.20188585

    Article  Google Scholar 

  21. Moreau L, Sontag E (2003) Balancing at the border of instability. Phys Rev E Stat Nonlinear Soft Matter Phys 68(2 Pt 1):020901. https://doi.org/10.1103/PhysRevE.68.020901

    Article  MathSciNet  Google Scholar 

  22. Moreau L, Sontag E, Arcak M (2003) Feedback tuning of bifurcations. Syst Cont Lett 50:229–239. https://doi.org/10.1016/S0167-6911(03)00157-9

    Article  MathSciNet  Google Scholar 

  23. Chou CT (2017) Chemical reaction networks for computing logarithm. Synth Biol 2(1):ysx002

    Article  Google Scholar 

  24. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466. https://doi.org/10.1016/S0006-3495(61)86902-6

    Article  Google Scholar 

  25. Gill PE, Murray W (1978) Algorithms for the solution of the nonlinear least-squares problem. SIAM J Numer Anal 15(5):977–992

    Article  MathSciNet  Google Scholar 

  26. Shi C, Huang C-H, Devreotes PN, Iglesias PA (2013) Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. PLoS Comput Biol 9(7):1003122. https://doi.org/10.1371/journal.pcbi.1003122

    Article  MathSciNet  Google Scholar 

  27. Biswas D, Devreotes PN, Iglesias PA (2021) Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells. PLoS Comput Biol 17(7):1008803. https://doi.org/10.1371/journal.pcbi.1008803

    Article  Google Scholar 

  28. Odani K (1995) The limit cycle of the van der Pol equation is not algebraic. J Differ Equ 115(1):146–152

    Article  MathSciNet  Google Scholar 

  29. Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep Rev Sec Phys Lett 392(6):321–424. https://doi.org/10.1016/j.physrep.2003.10.015

    Article  Google Scholar 

  30. Biswas D, Bhattacharya S, Iglesias PA (2022) Enhanced chemotaxis through spatially regulated absolute concentration robustness. Int J Robust Nonlinear. https://doi.org/10.1002/rnc.6049

    Article  Google Scholar 

  31. Bhattacharya S, Banerjee T, Miao Y, Zhan H, Devreotes PN, Iglesias PA (2020) Traveling and standing waves mediate pattern formation in cellular protrusions. Sci Adv 6(32):eaay7682. https://doi.org/10.1126/sciadv.aay7682

    Article  Google Scholar 

  32. Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82(1 Pt 1):50–63. https://doi.org/10.1016/S0006-3495(02)75373-3

    Article  Google Scholar 

  33. Takeda K, Shao D, Adler M, Charest PG, Loomis WF, Levine H, Groisman A, Rappel W-J, Firtel RA (2012) Incoherent feedforward control governs adaptation of activated Ras in a eukaryotic chemotaxis pathway. Sci Signal 5(205):2. https://doi.org/10.1126/scisignal.2002413

    Article  Google Scholar 

  34. Tang M, Wang M, Shi C, Iglesias PA, Devreotes PN, Huang C-H (2014) Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat Commun 5:5175. https://doi.org/10.1038/ncomms6175

    Article  Google Scholar 

  35. Kutscher B, Devreotes P, Iglesias PA (2004) Local excitation, global inhibition mechanism for gradient sensing: an interactive applet. Sci STKE 2004(219):3. https://doi.org/10.1126/stke.2192004pl3

    Article  Google Scholar 

  36. Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68. https://doi.org/10.1186/1752-0509-2-68

    Article  Google Scholar 

  37. Edwards M, Cai H, Abubaker-Sharif B, Long Y, Lampert TJ, Devreotes PN (2018) Insight from the maximal activation of the signal transduction excitable network in Dictyostelium discoideum. Proc Natl Acad Sci USA 115(16):3722–3730. https://doi.org/10.1073/pnas.1710480115

    Article  Google Scholar 

  38. Salehi SA, Parhi KK, Riedel MD (2017) Chemical reaction networks for computing polynomials. ACS Synth Biol 6(1):76–83. https://doi.org/10.1021/acssynbio.5b00163

    Article  Google Scholar 

  39. Chou CT (2017) Chemical reaction networks for computing logarithm. Synth Biol (Oxford) 2(1):002. https://doi.org/10.1093/synbio/ysx002

    Article  Google Scholar 

  40. Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y (2017) Excitable signal transduction networks in directed cell migration. Annu Rev Cell Dev Biol 33:103–125. https://doi.org/10.1146/annurev-cellbio-100616-060739

    Article  Google Scholar 

  41. Anderson DF, Enciso GA, Johnston MD (2014) Stochastic analysis of biochemical reaction networks with absolute concentration robustness. J R Soc Interface 11(93):20130943. https://doi.org/10.1098/rsif.2013.0943

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Iglesias laboratory for useful conversations, particularly Sayak Bhattacharya. PAI also wishes to thank Eduardo Sontag for many years of interesting and fruitful discussions. It is an honor to consider him a colleague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Iglesias.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, D., Banerjee, P. & Iglesias, P.A. Balancing at the edge of excitability: implications for cell movement. Math. Control Signals Syst. 36, 121–137 (2024). https://doi.org/10.1007/s00498-023-00361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00361-6

Keywords

Navigation