Skip to main content
Log in

Hydrocatalytic Treatment of a Broad Coal Tar Fraction

  • CHEMISTRY
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The research topic is the influence of preliminary ultrasonic treatment of coal tar at ArcelorMittal Temirtau on the individual composition of the products of hydrolytic treatment in the presence of iron-bearing composite catalysts with a carbon carrier (Fe2O3/C and FeSO4/C), within a hydrogen atmosphere. In ultrasound treatment with Fe2O3/C catalyst, the tetralin content increases to 23.60%, the dihydrophenanthrene content to 1.47%, and the indane content to 2.26%. For FeSO4/C catalyst, by contrast, the tetralin content increases to 11.09%, the dihydrophenanthrene content to 1.66%, and the tetrahydrophenanthrene content to 1.27%. Acenaphthylene is almost completely hydrogenated to acenaphthene (2.63%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Subramanyam, M.D., Gollakota, A.R.K., and Kishore, N., CFD simulations of catalytic hydrodeoxygenation of bio-oil using Pt/Al2O3 in a fixed bed reactor, RSC Adv., 2015, vol. 5, no. 110, pp. 90354–90366. https://doi.org/10.1039/c5ra14985a

    Article  CAS  Google Scholar 

  2. Fortunate, O. and Kishore, N., Computational fluid dynamics investigation on catalytic hydrodeoxygenation of a bio-oil model compound in a fluidized bed reactor, J. Therm. Sci. Eng. Appl., 2021, vol. 13, no. 6, p. 61018. https://doi.org/10.1115/1.4050565

    Article  CAS  Google Scholar 

  3. Fortunate, O. and Kishore, N., Computational fluid dynamics study on hydrodeoxygenation of pyrolytic bio-oil model compound, guaiacol, in fluidized bed reactor, Curr. Res. Green Sustainable Chem., 2022, vol. 5, p. 100287. https://doi.org/10.1016/j.crgsc.2022.100287

    Article  CAS  Google Scholar 

  4. Sun, J., Li, D., Yao, R., Sun, Z., Li, X., and Li, W., Modeling the hydrotreatment of full range medium temperature coal tar by using a lumping kinetic approach, React. Kinet., Mech. Catal., 2015, vol. 114, no. 2, pp. 451–471. https://doi.org/10.1007/s11144-014-0791-2

    Article  CAS  Google Scholar 

  5. Yuan, Ya., Li, D., Zhang, L., Zhu, Yo., Wang, L., and Li, W., Development, status, and prospects of coal tar hydrogenation technology, Energy Technol., 2016, vol. 4, no. 11, pp. 1338–1348. https://doi.org/10.1002/ente.201600184

    Article  CAS  Google Scholar 

  6. Maloletnev, A.S., Current status of the hydrogenation of coals, Solid Fuel Chem., 2009, vol. 43, no. 3, pp. 165–176. https://doi.org/10.3103/s0361521909030082

    Article  Google Scholar 

  7. Zekel, L.A., Krasnobayeva, N.V., Kadiev, Kh.M., Khadzhiev, S.N., and Shpirt, M.Ya., Application of nanocatalytic systems for deep processing of coal and heavy petroleum feedstock, Solid Fuel Chem., 2010, vol. 44, no. 6, pp. 387–395. https://doi.org/10.3103/s0361521910060042

    Article  Google Scholar 

  8. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Polynuclear Aromatic Compounds. Part 4. Bitumens, Coal-Tars and Derived Products, Shale-Oils and Soots, Lyon: International Agency for Research on Cancer, 1985, vol. 35.

  9. Lei, Z., Hao, Sh., Yang, J., Lei, Zh., and Wei, K., Study on in situ catalytic cracking of coal tar by plasma preparation of the pyrolysis coke catalyst, ACS Omega, 2018, vol. 5, no. 25, pp. 14924–14932. https://doi.org/10.1021/acsomega.0c00198

    Article  CAS  Google Scholar 

  10. Gang, Yo., Zhang, X., Lei, X., Guo, H., Li, W., and Li, D., Hydroprocessing of low-temperature coal tar to produce jet fuel, RSC Adv., 2018, vol. 8, pp. 23663–23670. https://doi.org/10.1021/acsomega.0c00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, W., Li, W., Gao, R., Ma, H., Li, D., Niu, M., and Lei, X., Hydroprocessing of low temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3–SiO2 catalyst, Energy Fuels, 2017, vol. 31, no. 4, pp. 3768–3783. https://doi.org/10.1021/acs.energyfuels.6b03390

    Article  CAS  Google Scholar 

  12. Meng, J., Yang, J., Fang, J., Li, N., He, Ya., Huang, H., and Lu, J., Production of liquid fuels from low-temperature coal tar via hydrogenation over CoMo/USY catalysts, React. Kinet., Mech. Catal., 2017, vol. 127, no. 2, pp. 961–978. https://doi.org/10.1007/s11144-019-01576-y

    Article  CAS  Google Scholar 

  13. Niu, M., Ji, P., Fan, Z., Yan, Yo., Li, D., and Li, W., Hydrofining process of coal tar based on four kinds of catalyst grading, Energy Fuels, 2020, vol. 34, no. 5, pp. 6510–6517. https://doi.org/10.1021/acs.energyfuels.0c00641

    Article  CAS  Google Scholar 

  14. Niu, M., Sun, X., Li, D., Cui, W., Zhang, X., Bai, X., and Li, W., The hydrodeoxygenation, hydrogenation, hydrodealkylation and ring-opening reaction in the hydrotreating of low temperature coal tar over Ni–Mo/γ-Al2O3 catalyst, React. Kinet., Mech. Catal., 2017, vol. 121, no. 6, pp. 487–503. https://doi.org/10.1007/s11144-017-1172-4

    Article  CAS  Google Scholar 

  15. Zhang, H., Chen, G., Bai, L., Chang, N., and Wang, Yo., Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts, Fuel, 2019, vol. 244, pp. 359–365. https://doi.org/10.1016/j.fuel.2019.02.015

    Article  CAS  Google Scholar 

  16. Egashira, R. and Saito, J., Solvent extraction of coal tar absorption oil with continuous countercurrent spray column, J. Jpn. Pet. Inst., 2007, vol. 50, no. 4, pp. 218–226. https://doi.org/10.1627/jpi.50.218

    Article  CAS  Google Scholar 

  17. Zhao, N., Liu, D., Du, H., Wang, C., Wen, F., and Shi, N., Investigation on component separation and structure characterization of medium-low temperature coal tar, Appl. Sci., 2019, vol. 9, no. 20, p. 4335. https://doi.org/10.3390/app9204335

    Article  CAS  Google Scholar 

  18. Fang, M., Ma, S., Wang, T., Xia, Z., Tang, W., Xia, L., and Luo, Z., Hydrotreatment of model compounds with catalysts of NiW/Al2O3 and NiWP/Al2O3 to simulate low temperature coal tar oil, RSC Adv., 2017, vol. 7, no. 86, pp. 54512–54521. https://doi.org/10.1039/c7ra10317d

    Article  CAS  Google Scholar 

  19. Gao, H.-Sh., Zong, Zh.-M., Yang, Zh., Teng, D.-G., Sun, X.-H., Yan, L., Wei, X.-Yo., Guo, Q.-J., Zhao, T.-Sh., and Bai, H.-C., Separation of arenols from a low-temperature coal tar by liquid-liquid extraction, Korean J. Chem. Eng., 2020, vol. 37, no. 5, pp. 835–838. https://doi.org/10.1007/s11814-020-0480-y

    Article  CAS  Google Scholar 

  20. Niu, M., Sun, X., Gao, R., Li, D., Cui, W., and Li, W., Effect of dephenolization on low temperature coal tar hydrogenation to produce fuel oil, Energy Fuels, 2016, vol. 30, no. 12, pp. 10215–10221. https://doi.org/10.1021/acs.energyfuels.6b01985

    Article  CAS  Google Scholar 

  21. Rosal, R., Díez, F.V., and Sastre, H., Catalytic hydrogenation of multiring aromatic hydrocarbons in a coal tar fraction, Ind. Eng. Chem. Res., 1992, vol. 31, no. 4, pp. 1007–1012. https://doi.org/10.1021/ie00004a004

    Article  CAS  Google Scholar 

  22. Toukoniitty, B., Mikkola, J.-P., Murzin, D.Yu., and Salmi, T., Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions, Appl. Catal. A: Gen., 2005, vol. 279, no. 1, pp. 1–22. https://doi.org/10.1016/j.apcata.2004.10.044

    Article  CAS  Google Scholar 

  23. Talebian-Kiakalaieh, A., Amin, N.A.S., and Mazaheri, H., A review on novel processes of biodiesel production from waste cooking oil, Appl. Energy, 2013, vol. 104, pp. 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061

    Article  CAS  Google Scholar 

  24. Mohammadreza, M.S., Ahmad, R., Iman, N., and Mohammad, D.S., Effect of ultrasonic irradiation on rheological properties of asphaltenic crude oils, Pet. Sci., 2012, vol. 9, pp. 82–88. https://doi.org/10.1007/s12182-012-0186-9

    Article  CAS  Google Scholar 

  25. Hua, Q., Experimental studies on viscosity reduction of heavy crude oil by ultrasonic irradiation, Acoust. Phys., 2020, vol. 66, no. 5, pp. 495–500. https://doi.org/10.1134/S106377102005005X

    Article  Google Scholar 

  26. Toukoniitty, B., Toukoniitty, E., Mäki-Arvela, P., Mikkola, J.-P., Salmi, T., Murzin, D., and Kooyman, P., Effect of ultrasound in enantioselective hydrogenation of 1-phenyl-1,2-propanedione: Comparison of catalyst activation, solvents and supports, Ultrason. Sonochem., 2006, vol. 13, no. 1, pp. 68–75. https://doi.org/10.1016/j.ultsonch.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Yu, D., Tian, L., Wu, H., Wang, S., Wang, Ye., Ma, D., and Fang, X., Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435, Process Biochem., 2010, vol. 45, no. 4, pp. 519–525. https://doi.org/10.1016/j.procbio.2009.11.012

    Article  CAS  Google Scholar 

  28. Meiramov, M.G., Angular–linear isomerization on the hydrogenation of phenanthrene in the presence of iron-containing catalysts, Solid Fuel Chem., 2017, vol. 51, no. 2, pp. 107–110. https://doi.org/10.3103/s0361521917020070

    Article  CAS  Google Scholar 

  29. Ye, Yu., Zhu, Yi., Su, Z., Ma, F., and Liang, T., Hydrodynamic cavitation of creosote oil in the presence of a Ni2+ initiator results in an increase in its overall naphthalene content, ACS Omega, 2021, vol. 6, no. 12, pp. 8288–8296. https://doi.org/10.1021/acsomega.0c06357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ueda, K., Matsui, H., Song, Ch., and Xu, W.-Ch., Catalytic hydrocracking of phenanthrene over NiMo/Al2O3, CoMo/Al2O3 catalysts and metal-loaded Y-zeolites, J. Jpn. Pet. Inst., 1990, vol. 33, no. 6, pp. 413–417. https://doi.org/10.1627/jpi1958.33.41

    Article  CAS  Google Scholar 

  31. Sultanguzin, I.A., Isaev, M.V., and Kurzanov, S.Yu., Optimizing the production of coke, coal chemicals, and steel on the basis of environmental and energy criteria, Metallurgist, 2023, vol. 54, nos. 9–10, pp. 600–607. https://doi.org/10.1007/s11015-011-9346-1

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Science Committee of the Kazakhstan Ministry of Education and Science (program BR10965230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. T. Ordabaeva, Z. M. Muldakhmetov, A. M. Gazaliev, M. G. Meiramov or T. S. Zhivotova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordabaeva, A.T., Muldakhmetov, Z.M., Gazaliev, A.M. et al. Hydrocatalytic Treatment of a Broad Coal Tar Fraction. Coke Chem. 66, 220–226 (2023). https://doi.org/10.3103/S1068364X23700680

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23700680

Navigation