Skip to main content
Log in

Thermal Analysis of the Combustion of Lignite–Biomass Mixtures

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The combustion of lignite, biomass (pine cones), and their mixtures (in different proportions) is investigated by simultaneous thermal analysis. In the analysis, ~6-mg samples are heated in an oxidative atmosphere at 20°C/min, with an air flow rate of 50 mL/min. The thermal characteristics and elemental composition of the solid fuels are determined by standard methods. Analysis of the heating of the fuel mixtures and their components indicates that combustion occurs in different temperature ranges: 258–549°C for lignite; 220–503°C for pine cones; and 230–536°C for their mixtures (depending on the proportions of the components). The coke residue of the pine cones ignites at 302°C, which is 58°C lower than the value for lignite (360°C). Adding 25–75% biomass to lignite lowers the ignition temperature of the mixture by 21–56°C. Predicting the basic combustion characteristics of the mixture by appropriate summation of the components’ characteristics is possible if the biomass content is no more than 25%. With higher biomass content, the influence of the components on the combustion characteristics of the mixture is nonproportional, over a broad temperature range

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Alsulami, R.A., El-Sayed, S.A., Eltaher, M.A., Mohammad, A., Almitani, K.H., and Mostafa, M.E., Thermal decomposition characterization and kinetic parameters estimation for date palm wastes and their blends using TGA, Fuel, 2023, vol. 334, p. 126600. https://doi.org/10.1016/j.fuel.2022.126600

    Article  CAS  Google Scholar 

  2. Ni, Z., Song, Z., Bi, H., Jiang, C., Sun, H., Qiu, Z., He, L., and Lin, Q., The effect of cellulose on the combustion characteristics of coal slime: TG-FTIR, principal component analysis, and 2D-COS, Fuel, 2023, vol. 333, p. 126310. https://doi.org/10.1016/j.fuel.2022.126310

    Article  CAS  Google Scholar 

  3. Chen, Z., Chen, Z., Liu, J., Zhuang, P., Evrendilek, F., Huang, S., Chen, T., Xie, W., He, Ya., and Sun, S., Optimizing co-combustion synergy of soil remediation biomass and pulverized coal toward energetic and gas-to-ash pollution controls, Sci. Total Environ., 2023, vol. 857, p. 159585. https://doi.org/10.1016/j.scitotenv.2022.159585

    Article  CAS  PubMed  Google Scholar 

  4. Igliński, B., Pietrzak, M., Kiełkowska, U., Skrzatek, M., Kumar, G., and Piechota, G., The assessment of renewable energy in Poland on the background of the world renewable energy sector, Energy, 2022, vol. 261, p. 125319. https://doi.org/10.1016/j.energy.2022.125319

    Article  Google Scholar 

  5. Ryabov, G.A., Cofiring of coal and fossil fuels is a way to decarbonization of heat and electricity generation (review), Therm. Eng., 2022, vol. 69, no. 6, pp. 405–417. https://doi.org/10.1134/S0040601522060052

    Article  Google Scholar 

  6. Sezer, S., Kartal, F., and Özveren, U., The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index, Therm. Sci. Eng. Prog., 2021, vol. 23, p. 100889. https://doi.org/10.1016/j.tsep.2021.100889

    Article  CAS  Google Scholar 

  7. Bala-Litwiniak, A. and Zajemska, M., Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler, Renewable Energy, 2020, vol. 162, pp. 151–159. https://doi.org/10.1016/j.renene.2020.07.139

    Article  CAS  Google Scholar 

  8. Mikhaylova, E.S., Gavrilyuk, O.M., Kraft, Ya.V., and Ismagilov, Z.R., Low-temperature thermal destruction of Kuznetsk Basin coal: Product composition, Coke Chem., 2021, vol. 64, no. 11, pp. 481–487. https://doi.org/10.3103/S1068364X21110041

    Article  Google Scholar 

  9. Cong, K., Han, F., Zhang, Ya., and Li, Q., The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA, Fuel, 2019, vol. 237, pp. 126–132. https://doi.org/10.1016/j.fuel.2018.09.149

    Article  CAS  Google Scholar 

  10. Hillig, D., Pohlmann, J., Manera, C., Perondi, D., Pereira, F., Altafini, C., and Godinho, M., Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions, Energy, 2020, vol. 202, p. 117793. https://doi.org/10.1016/j.energy.2020.117793

    Article  CAS  Google Scholar 

  11. Zhuikov, A.V. and Glushkov, D.O., Combustion of coal with forest biomass in nonisothermal heating, Coke Chem., 2022, vol. 65, no. 8, pp. 308–315. https://doi.org/10.3103/S1068364X22080075

    Article  Google Scholar 

  12. Galina, N.R., Romero Luna, C.M., Arce, G.L.A.F., and Ávila, I., Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis, J. Energy Inst., 2019, vol. 92, no. 3, pp. 741–754. https://doi.org/10.1016/j.joei.2018.02.008

    Article  CAS  Google Scholar 

  13. Xiao, Z., Wang, S., Luo, M., and Cai, J., Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition, Fuel, 2022, vol. 310, p. 122399. https://doi.org/10.1016/j.fuel.2021.122399

    Article  CAS  Google Scholar 

  14. Rago, Yo.P., Collard, F., Görgens, J.F., Surroop, D., and Mohee, R., Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour, Energy, 2022, vol. 239, p. 121859. https://doi.org/10.1016/j.energy.2021.121859

    Article  CAS  Google Scholar 

  15. Tong, W., Liu, Q., Ran, G., Liu, L., Ren, S., Chen, L., and Jiang, L., Experiment and expectation: Co-combustion behavior of anthracite and biomass char, Bioresour. Technol., 2019, vol. 280, pp. 412–420. https://doi.org/10.1016/j.biortech.2019.02.055

    Article  CAS  PubMed  Google Scholar 

  16. Glushkov, D.O., Kuznetsov, G.V., Chebochakova, D.A., Lyakhovskaya, O.E., Shlegel, N.E., Anufriev, I.S., and Shadrin, E.Yu., Experimental study of coal dust ignition characteristics at oil-free start-up of coal-fired boilers, Appl. Therm. Eng., 2018, vol. 142, pp. 371–379. https://doi.org/10.1016/j.applthermaleng.2018.07.010

    Article  CAS  Google Scholar 

  17. Li, W., Huang, Ya., Xie, J., Lang, L., Bu, W., Jiang, Ya., Wang, Ya., and Yin, X., Assessment of Flammulina velutipes residue as potential fuels for co-combustion with pine sawdust from characteristics of combustion process, flue gases and ashes, J. Anal. Appl. Pyrolysis, 2021, vol. 158, p. 105156. https://doi.org/10.1016/j.jaap.2021.105156

    Article  CAS  Google Scholar 

  18. Xiao, Z., Wang, S., Luo, M., and Cai, J., Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition, Fuel, 2022, vol. 310, p. 122399. https://doi.org/10.1016/j.fuel.2021.122399

    Article  CAS  Google Scholar 

  19. Zhuikov, A., Glushkov, D., Kuznetsov, P., Grishina, I., and Samoilo, A., Ignition of two-component and three-component fuel mixtures based on brown coal and char under slow heating conditions, J. Therm. Anal. Calorim., 2022, vol. 147, no. 21, pp. 11965–11976. https://doi.org/10.1007/s10973-022-11406-4

    Article  CAS  Google Scholar 

  20. Zhao, R., Qin, J., Chen, T., and Wu, J., TG-FTIR study on co-combustion of bituminous coal semicoke and lignite, J. Therm. Anal. Calorim., 2022, vol. 147, no. 2, pp. 1849–1858. https://doi.org/10.1007/s10973-020-10405-7

    Article  CAS  Google Scholar 

  21. Yuan, Ya., Zuo, H., Wang, J., Gao, Ya., Xue, Q., and Wang, J., Co-combustion behavior, kinetic and ash melting characteristics analysis of clean coal and biomass pellet, Fuel, 2022, vol. 324, p. 124727. https://doi.org/10.1016/j.fuel.2022.124727

    Article  CAS  Google Scholar 

  22. Armakan, S., Civan, M., and Yurdakul, S., Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefi ed forms of two distinct types of biomass and their blends with lignite, J. Therm. Anal. Calorim., 2022, vol. 147, no. 22, pp. 12855–12869. https://doi.org/10.1007/s10973-022-11432-2

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation (grant number 23-23-00280, https://rscf.ru/project/23-23-00280/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zhuikov or D. O. Glushkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuikov, A.V., Glushkov, D.O. Thermal Analysis of the Combustion of Lignite–Biomass Mixtures. Coke Chem. 66, 196–204 (2023). https://doi.org/10.3103/S1068364X23700692

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23700692

Navigation