Skip to main content
Log in

Methane Dehydrogenation and Coking Resistance on Ni(111) Surfaces of SOFC Anodes with Different Cu Doping Ratios under a Consistent DFT Framework

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Carbon deposition on nickel-based anodes is a key problem for solid oxide fuel cells (SOFCs) using hydrocarbon fuels. One of the solutions is doping with other elements. In this work, DFT calculations were used to systematically study the processes of continuous CH4 dehydrogenation, carbon formation, and carbon elimination on Ni(111) surfaces doped with different amounts of Cu. The Cu doping concentrations on the Ni surface are set as 0, 1/9, 4/9, 5/9, 8/9, and 1 ml, namely Ni(111), NiCu1, NiCu4, NiCu5, NiCu8, and Cu9. The adsorption energies and adsorption sites of the important substances were obtained by calculation. In addition, the kinetics and thermodynamics of the main reactions and potential carbon removal pathways are discussed. Prior studies have shown that the introduction of Cu weakens the interaction between the Ni-based surface and the absorber, thereby enhancing the activity of various species on the surface of Ni-based catalysts. Second, the methane cracking path on the Ni-based surface is CH4 → CH3 → CH2 → CH, and the paths on the other five surfaces are the same. We found that the addition of Cu can weaken the adsorption of C, inhibit the activity of CH4 dehydrogenation, and promote the binding of C to the intermediate medium on the Ni-based surface, thus improving the ability of carbon deposition resistance. Finally, based on our DFT calculations, several potential carbon removal pathways are discussed in detail, and it is believed that the problem of carbon removal on SOFC anodes should focus on the oxidation of CH while preventing its direct cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Weber, A., Fuel flexibility of solid oxide fuel cells, Fuel Cells, 2021, vol. 21, no. 5, p. 440. https://doi.org/10.1002/fuce.202100037

    Article  CAS  Google Scholar 

  2. Cao, D., Sun, Y., and Wang, G., Direct carbon fuel cell: Fundamentals and recent developments, J. Power Sources, 2007, vol. 167, no. 2, p. 250. https://doi.org/10.1016/j.jpowsour.2007.02.034

    Article  CAS  Google Scholar 

  3. Blaylock, D. W., Ogura, T., Green, W. H., and Beran, G.J., Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni (111) under realistic conditions, J. Phys. Chem. C, 2009, vol. 113, no. 12, p. 4898. https://doi.org/10.1021/jp806527q

    Article  CAS  Google Scholar 

  4. Fan, C., Zhu, Y. A., Yang, M. L., Sui, Z. J., Zhou, X. G., and Chen, D., Density functional theory-assisted microkinetic analysis of methane dry reforming on Ni catalyst, Ind. Eng. Chem. Res., 2015, vol. 54, no. 22, p. 5901. https://doi.org/10.1021/acs.iecr.5b00563

    Article  CAS  Google Scholar 

  5. Li, B., Luo, Y., Li, B., Yuan, X., and Wang, X., Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane, Fuel Process. Technol., 2019, vol. 193, p. 348. https://doi.org/10.1016/j.fuproc.2019.05.033

    Article  CAS  Google Scholar 

  6. Xu, L., Wang, F., Chen, M., Zhang, J., Yuan, K., Wang, L., Wu, K., Xu, G., and Chen, W., Carbon dioxide reforming of methane over cobalt-nickel bimetal-doped ordered mesoporous alumina catalysts with advanced catalytic performances, ChemCatChem, 2016, vol. 8, no. 15, p. 2536. https://doi.org/10.1002/cctc.201600472

    Article  CAS  Google Scholar 

  7. Chen, L., Liu, W., Feng, H., Ren, Y., Chen, C., Wang, S., Yin, P., Yang, Y., Zhang, X., and Wei, M., Oxygen binding energy of doped metal: A shortcut to efficient Ni-based bimetallic catalysts for the hydrodeoxygenation reaction, Catal. Sci. Technol., 2021, vol. 11, no. 13, p. 4376. https://doi.org/10.1039/D1CY00496D

    Article  CAS  Google Scholar 

  8. Huang, L., Li, D., Tian, D., Jiang, L., Li, Z., Wang, H., and Li, K., Optimization of Ni-based catalysts for dry reforming of methane via alloy design: A review, Energy Fuels, 2022, vol. 36, p5102. https://doi.org/10.1021/acs.energyfuels.2c00523

    Article  CAS  Google Scholar 

  9. Zhang, M., Yang, K., Zhang, X., and Yu, Y., Effect of Ni (111) surface alloying by Pt on partial oxidation of methane to syngas: A DFT study, Surf. Sci., 2014, vol. 630, p. 236. https://doi.org/10.1016/j.susc.2014.08.023

    Article  CAS  Google Scholar 

  10. Wu, H., La Parola, V., Pantaleo, G., Puleo, F., Venezia, A. M., and Liotta, L.F., Ni-based catalysts for low temperature methane steam reforming: Recent results on Ni–Au and comparison with other bi-metallic systems, Catalysts, 2013, vol. 3, no. 2, p. 563. https://doi.org/10.3390/catal3020563

    Article  CAS  Google Scholar 

  11. Omran, A., Yoon, S. H., Khan, M., Ghouri, M., Chatla, A., and Elbashir, N., Mechanistic insights for dry reforming of methane on Cu/Ni bimetallic catalysts: DFT-assisted microkinetic analysis for coke resistance, Catalysts, 2020, vol. 10, no. 9, p. 1043. https://doi.org/10.3390/catal10091043

    Article  CAS  Google Scholar 

  12. Omran, A. and Sherif, A., DFT study of copper-nickel (111) catalyst for methane dry reforming, Master’s Thesis, Texas A & M University, 2019. https://hdl.handle.net/1969.1/184412.

  13. Hornés, A., Bera, P., Fernández-García, M., Guerrero-Ruiz, A., and Martínez-Arias, A., Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition, Appl. Catal. B: Environ., 2012, vol. 111, p. 96. https://doi.org/10.1016/j.apcatb.2011.09.022

    Article  CAS  Google Scholar 

  14. Xiao, Z., Hou, F., Zhang, J., Zheng, Q., Xu, J., Pan, L., Wang, L., Zou, J., Zhang, X., and Li, G., Methane dry reforming by Ni–Cu nanoalloys anchored on periclase-phase MgAlOx nanosheets for enhanced syngas production, ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 41, p. 48838. https://doi.org/10.1021/acsami.1c14918

    Article  CAS  PubMed  Google Scholar 

  15. Han, K., Wang, S., Liu, Q., and Wang, F., Optimizing the Ni/Cu ratio in Ni–Cu nanoparticle catalysts for methane dry reforming, ACS Appl. Nano Mater., 2021, vol. 4, no. 5, p. 5340. https://doi.org/10.1021/acsanm.1c00673

    Article  CAS  Google Scholar 

  16. Chatla, A., Ghouri, M. M., El Hassan, O. W., Mohamed, N., Prakash, A. V., and Elbashir, N.O., An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane, Appl. Catal. A: Gen., 2020, vol. 602, p. 117699. https://doi.org/10.1016/j.apcata.2020.117699

    Article  CAS  Google Scholar 

  17. Wang, M., Fu, Z., Yang, Z., Tuning the performance of Ni-based catalyst by doping coinage metal on steam reforming of methane and carbon-tolerance, Fuel Cells, 2014, vol. 14, no. 2, p. 251. https://doi.org/10.1002/fuce.201300254

    Article  CAS  Google Scholar 

  18. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., and Payne, M.C., First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater., 2005, vol. 220, nos. 5–6, p. 567. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  19. Hasnip, P. J., Refson, K., Probert, M. I., Yates, J. R., Clark, S. J., and Pickard, C.J., Density functional theory in the solid state, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 2014, vol. 372, no. 2011, p. 20130270. https://doi.org/10.1098/rsta.2013.0270

  20. Hratchian, H.P. and Schlegel, H.B., Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces, in Theory and Applications of Computational Chemistry, Elsevier, 2005, pp. 195–249. https://doi.org/10.1016/B978-044451719-7/50053-6

    Book  Google Scholar 

  21. Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., and Andzelm, J., A generalized synchronous transit method for transition state location, Comput. Mater. Sci., 2003, vol. 28, no. 2, p. 250. https://doi.org/10.1016/S0927-0256(03)00111-3

    Article  CAS  Google Scholar 

  22. Wolfbeisser, A., Klötzer, B., Mayr, L., Rameshan, R., Zemlyanov, D., Bernardi, J., Föttinger, K., and Rupprechter, G., Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts, Catal. Sci. Technol., 2015, vol. 5, no. 2, p. 967. https://doi.org/10.1039/C4CY00988F

    Article  CAS  PubMed  Google Scholar 

  23. González, S., Vines, F., García, J. F., Erazo, Y., and Illas, F., A DF-vdW study of the CH4 adsorption on different Ni surfaces, Surf. Sci., 2014, vol. 625, p. 64. https://doi.org/10.1016/j.susc.2014.03.012

    Article  CAS  Google Scholar 

  24. Yonghui, Z., Shenggang, L.I., Yuhan, S.U.N., Theoretical study on the dissociative adsorption of CH4 on Pd-doped Ni surfaces, Chin. J. Catal., 2013, vol. 34, no. 5, p. 911. https://doi.org/10.1016/S1872-2067(12)60565-8

    Article  CAS  Google Scholar 

  25. Ren, J., Guo, H., Yang, J., Qin, Z., Lin, J., and Li, Z., Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory, Appl. Surf. Sci., 2015, vol. 351, p. 504. https://doi.org/10.1016/j.apsusc.2015.05.173

    Article  CAS  Google Scholar 

  26. Wang, W. Y., Liu, J. H., Lv, C. Q., Ren, R. R., and Wang, G.C., Dry reforming of methane on Ni (1 1 1) surface with different Mo doping ratio: DFT-assisted microkinetic study, Appl. Surf. Sci., 2022, vol. 581, p. 152310. https://doi.org/10.1016/j.apsusc.2021.152310

    Article  CAS  Google Scholar 

  27. Han, Z., Yang, Z., Han, M., Comprehensive investigation of methane conversion over Ni(111) surface under a consistent DFT framework: Implications for anti-coking of SOFC anodes, Appl. Surf. Sci., 2019, vol. 480, p. 243. https://doi.org/10.1016/j.apsusc.2019.02.084

    Article  CAS  Google Scholar 

  28. Fan, C., Zhou, X. G., Chen, D., Cheng, H. Y., and Zhu, Y.A., Toward CH4 dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study, J. Chem. Phys., 2011, vol. 134, no. 13, p. 134704. https://doi.org/10.1063/1.3575193

    Article  CAS  PubMed  Google Scholar 

  29. Wang, S. G., Liao, X. Y., Cao, D. B., Li, Y. W., Wang, J., and Jiao, H., Formation of carbon species on Ni (111): Structure and stability, J. Phys. Chem. C, 2007, vol. 111, no. 29, p. 10894. https://doi.org/10.1021/jp070608v

    Article  CAS  Google Scholar 

  30. Qiu, H., Ran, J., Niu, J., Guo, F., and Ou, Z., Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni (111) surface: A DFT study, Mol. Catal., 2021, vol. 502, p. 111360. https://doi.org/10.1016/j.mcat.2020.111360

    Article  CAS  Google Scholar 

  31. Jiang, Z., Wu, Z., Fang, T., and Yi, C., Enhancement CH bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(111) surface: a DFT study, Chem. Phys. Lett., 2019, vol. 715, p. 323. https://doi.org/10.1016/j.cplett.2018.12.001

    Article  CAS  Google Scholar 

  32. Liu, H., Zhang, R., Yan, R., Wang, B., and Xie, K., CH4 dissociation on NiCo (1 1 1) surface: A first-principles study, Appl. Surf. Sci., 2011, vol. 257, no. 21, p. 8955. https://doi.org/10.1016/j.apsusc.2011.05.073

    Article  CAS  Google Scholar 

  33. An, W., Gatewood, D., Dunlap, B., and Turner, C.H., Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory, J. Power Sources, 2011, vol. 196, no. 10, p. 4724. https://doi.org/10.1016/j.jpowsour.2011.01.007

    Article  CAS  Google Scholar 

  34. Menon, P.G., De Deken, J.C., and Froment, G.F., Formaldehyde as an intermediate in the steam reforming of methane, J. Catal., 1985, vol. 95, no. 1, p. 313. https://doi.org/10.1016/0021-9517(85)90035-1

    Article  CAS  Google Scholar 

  35. Bian, Z., Das, S., Wai, M. H., Hongmanorom, P., and Kawi, S., A review on bimetallic nickel-based catalysts for CO2 reforming of methane, ChemPhysChem, 2017, vol. 18, no. 22, p. 3117. https://doi.org/10.1002/cphc.201700529

    Article  CAS  PubMed  Google Scholar 

  36. Kawi, S., Kathiraser, Y., Ni, J., Oemar, U., Li, Z., and Saw, E.T., Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane, ChemSusChem, 2015, vol. 8, no. 21, p. 3556. https://doi.org/10.1002/cssc.201500390

    Article  CAS  PubMed  Google Scholar 

  37. Li, J., Croiset, E., and Ricardez-Sandoval, L., Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study, Appl. Surf. Sci., 2014, vol. 311, p. 435. https://doi.org/10.1016/j.apsusc.2014.05.081

    Article  CAS  Google Scholar 

  38. Niu, J., Ran, J., Du, X., Qi, W., Zhang, P., and Yang, L., Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study, Mol. Catal., 2017, vol. 434, p. 206. https://doi.org/10.1016/j.mcat.2017.03.015

    Article  CAS  Google Scholar 

  39. Wang, S. G., Liao, X. Y., Hu, J., Cao, D. B., Li, Y. W., Wang, J., and Jiao, H., Kinetic aspect of CO2 reforming of CH4 on Ni(111): A density functional theory calculation, Surf. Sci., 2007, vol. 601, no. 5, p. 1271. https://doi.org/10.1016/j.susc.2006.12.059

    Article  CAS  Google Scholar 

  40. Wang, S. G., Cao, D. B., Li, Y. W., Wang, J., and Jiao, H., Reactivity of surface OH in CH4 reforming reactions on Ni(111): A density functional theory calculation, Surf. Sci., 2009, vol. 603, no. 16, p. 2600. https://doi.org/10.1016/j.susc.2009.06.009

    Article  CAS  Google Scholar 

  41. Wang, Z., Cao, X. M., Zhu, J., and Hu, P., Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory, J. Catal., 2014, vol. 311, p. 469. https://doi.org/10.1016/j.jcat.2013.12.015

    Article  CAS  Google Scholar 

  42. Wang, X., Pan, W., Yuan, X., and Li, B., Density-functional theory investigation into the role of Fe doping for improving the carbon resistance over Ni3Fe(111) surface in methane reforming with CO2, Appl. Surf. Sci., 2022, vol. 574, p. 151661. https://doi.org/10.1016/j.apsusc.2021.151661

    Article  CAS  Google Scholar 

  43. Han, J. W., Park, J. S., Choi, M. S., and Lee, H., Uncoupling the size and support effects of Ni catalysts for dry reforming of methane, Appl. Catal. B: Environ., 2017, vol. 203, p. 625. https://doi.org/10.1016/j.apcatb.2016.10.069

    Article  CAS  Google Scholar 

  44. Wang, S., Lu, G.Q., and Millar G.J., Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art, Energy Fuels, 1996, vol. 10, no. 4, p. 896. https://doi.org/10.1021/ef950227t

    Article  CAS  Google Scholar 

  45. Guo, X., Liu, H., Wang, B., Wang, Q., and Zhang, R., Insight into C+O(OH) reaction for carbon elimination on different types of CoNi(111) surfaces: A DFT study, RSC Adv., 2015, vol. 5, no. 26, p. 19970. https://doi.org/10.1039/C4RA15555F

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (grants 51764028), Science and Technology Planning Project of Yunnan Province (202202AD080008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: SOFC, solid oxide fuel cell; TPB, three-phase boundary; SMR, steam methane reforming; DFF, density functional theory; DRM, dry methane reforming; fcc, face-centered cubic structures; hcp, hexagonal close-packed structures; PBE, Perdew–Burke–Ernzerhof functional; GGA, generalized gradient approximation; IS, initial state; TS, transition states; FS, final state; SCF, self-consistent field; LST, linear synchronous transit method; QST, quadratic synchronous transit method; RMS, root mean square (convergence criterion); \({{E}_{{{\text{adsorbates}}/{\text{slab}}}}}~\), total energy of adsorbates on the surface; \({{E}_{{{\text{adsorbates}}}}}\), total energy of the adsorbates; \({{E}_{{{\text{slab}}}}}\), total energy of the bare surface; \({{E}_{{\text{a}}}}\), energy barrier; ΔE, reaction heat; \({{E}_{{{\text{IS}}}}}\), \({{E}_{{{\text{TS}}}}}\), and \({{E}_{{{\text{FS}}}}}\), total energies of the initial state reactants, the transition states, and the final state products, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin Ding, Yu, J., Chen, F.Y. et al. Methane Dehydrogenation and Coking Resistance on Ni(111) Surfaces of SOFC Anodes with Different Cu Doping Ratios under a Consistent DFT Framework. Kinet Catal 64, 371–389 (2023). https://doi.org/10.1134/S0023158423040146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040146

Keywords:

Navigation