Skip to main content
Log in

Composites Based on MIL-100(Fe) and Diatomite for the Photo-Fenton Degradation of Phenol

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Porous composites based on a MIL-100(Fe) metal–organic framework and a natural diatomite material have been synthesized. The composites are characterized by a specific surface area of 322 and 441 m2/g and a hierarchical pore structure represented by wide pores of the original diatomite and narrow meso- and micropores of the formed MIL-100(Fe) particles. The effect of synthesis approach on the structure of the composites and their catalytic properties in the photocatalytic degradation of phenol has been studied. In the composite synthesized with the preimpregnation of diatomite with an iron nitrate solution, MIL-100(Fe) particles are mostly formed inside the diatomite pores. The composite samples exhibit catalytic activity in the photo-Fenton degradation of phenol. The highest activity is exhibited by the sample synthesized without any preimpregnation of diatomite; this sample is characterized by the dominant formation of MIL-100(Fe) particles on the external surface of the diatomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Busca, G., Berardinelli, S., Resini, C., and Arrighi, L., J. Hazard. Mater., 2008, vol. 160, nos. 2–3, p. 265.

    Article  CAS  PubMed  Google Scholar 

  2. Clarizia, L., Russo, D., Di Somma, I., Marotta, R., and Andreozzi, R., Appl. Catal. B: Environ., 2017, vol. 209, p. 358.

    Article  CAS  Google Scholar 

  3. Sashkina, K.A., Semeikina, V.S., Labko, V.S., Rudina, N.A., and Parkhomchuk, E.V., Kinet. Katal., 2013, vol. 54, no. 5, p. 676.

    Article  Google Scholar 

  4. Nivetha, R., Gothandapani, K., Raghavan, V., Jacob, G., Sellappan, R., Bhardwaj, P., Pitchaimuthu, S., Kannan, A.N.M., Jeong, S.K., and Grace, N., ACS Omega, 2020, vol. 5, no. 30, p. 18941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, S. and Wang, X., Small, 2015, vol. 11, no. 26, p. 3097.

    Article  CAS  PubMed  Google Scholar 

  6. Cai, G., Yan, P., Zhang, L., Zhou, H.C., and Jiang, H.L., Chem. Rev., 2021, vol. 121, no. 20, p. 12278.

    Article  CAS  PubMed  Google Scholar 

  7. Isaeva, V.I., Chernyshev, V.V., and Fomkin, A.A., Micropor. Mesopor. Mater., 2020, vol. 300, p. 110136.

    Article  CAS  Google Scholar 

  8. Engh, K.R., Diatomite, in Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, NJ: Wiley, 2000.

    Google Scholar 

  9. Kapranov, V.N. and Kamskii, A.V., Plodorodie, 2006, vol. 31, no. 4, p. 12.

    Google Scholar 

  10. Yılmaz, B. and Ediz, N., Cem. Concr. Compos., 2008, vol. 30, no. 3, p. 202.

    Article  Google Scholar 

  11. Millqvist, M.T. and Luz, A.B., Mining Metall. Explor., 2003, vol. 20, no. 1, p. 42.

    Google Scholar 

  12. Ghobara, M. and Mohamed, A., in Diatoms: Fundamentals and Applications, Gordon, R. and Seckbach, J., Eds., Hoboken, NJ: Wiley and Salem, 2019, p. 471.

    Google Scholar 

  13. Liu, D., Gu, J., Liu, Q., and Tan, Y., Li, Z., Zhang, W., Su, Y., Li, W., Cui, A., Gu, C., and Zhang, D., Adv. Mater., 2014, vol. 26, no. 8, p. 1229.

    Article  CAS  PubMed  Google Scholar 

  14. Zubkov, A.V., Vyshegorodtseva, E.V., Bugrova, T.A., and Mamontov, G.V., J. Phys. Conf. Ser., 2020, vol. 1611, no. 1, p. 012040.

  15. Mamontov, G.V., RF Patent 2727393, 2020.

  16. Evdokimova, E.V., Matskan, P.A., and Mamontov, G.V., Zh. Fiz. Khim., 2022, vol. 96, no. 1, p. 107.

    Google Scholar 

  17. Vyshegorodtseva, E.V., Matskan, P.A., and Mamontov, G.V., AIP Conf. Proc., 2020, vol. 2301, no. 1, p. 040018.

    Article  CAS  Google Scholar 

  18. Seo, Y., Yoon, J.W., Lee, J.S., Lee, H., Hwang, Y.K., Jun, H., Horcajada, P., Serre, C., and Chang, S., Micropor. Mesopor. Mater., 2012, vol. 157, p. 137.

    Article  CAS  Google Scholar 

  19. Atyaksheva, L.F., Dobryakova, I.V., Ivanova, I.I., and Knyazeva E.E, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 10, p. 1924.

    Article  CAS  Google Scholar 

  20. Simon, M.A., Anggraeni, E., Soetaredjo, F.E., Santoso, S.P., Irawaty, W., Thanh, T.C., Hartono, S.B., Yuliana, M., and Ismadji, S., Sci. Rep., vol. 9, no. 1, p. 1.

  21. Uthappa, U.T., Kigga, M., Sriram, G., Ajeya, K.V., Jung, H.Y., Neelgund, G.M., and Kurkuri, M.D., Micropor. Mesopor. Mater., 2019, vol. 288, p. 109572.

    Article  CAS  Google Scholar 

  22. Nehra, M., Dilbaghi, N., Singhal, N.K., Hassan, A., Kim, K., and Kumar, S., Environ. Res., 2019, vol. 169, p. 229.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C., Li, B., Zhou, L., Xia, Z., Feng, N., Ding, J., Wang, L., Wan, H., and Guan, G., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 27, p. 23060.

    Article  CAS  PubMed  Google Scholar 

  24. Herney-Ramirez, J., Vicente, M.A., and Madeira, L.M., Appl. Catal. B: Environ., 2010, vol. 98, nos. 1–2, p. 10.

    Article  CAS  Google Scholar 

  25. Ameta R., Chohadia A.K., Jain A., and Punjabi, P.B., in Advanced Oxidation Processes for Waste Water Treatment, Ameta, S.C. and Ameta, R., Eds., Cambridge, MA: Academic Press, 2018, p. 49.

    Google Scholar 

  26. Du, C., Zhang, Y., Zhang, Z., Zhou, L., Yu, G., Wen, X., Chi, T., Wang, G., Su, Y., Deng, F., Lv, Y., and Zhu, H., Chem. Eng. J., 2022, vol. 431, p. 133932.

    Article  CAS  Google Scholar 

  27. Mohammadifard, Z., Saboori, R., Mirbagheri, N.S., and Sabbaghi, S., Environ. Pollut., 2019, vol. 251, p. 783.

    Article  CAS  PubMed  Google Scholar 

  28. Lv, H., Zhao, H., Cao, T., Qian, L., Wang, Y., and Zhao, G., J. Mol. Catal. A. Chem., 2015, vol. 400, p. 81.

    Article  CAS  Google Scholar 

  29. Wu, K., Xie, Y., Zhao, J., and Hidaka, H., J. Mol. Catal. A. Chem., 1999, vol. 144, no. 1, p. 77.

    Article  CAS  Google Scholar 

  30. Luo, M., Bowden, D., and Brimblecombe, P., Appl. Catal. B: Environ., 2009, vol. 85, nos. 3–4, p. 201.

    Article  CAS  Google Scholar 

  31. Chellal, K., Bachari, K., and Sadi, F., Kinet. Catal., 2014, vol. 55, no. 4, p. 467.

    Article  CAS  Google Scholar 

  32. Huang, W., Shao, H., Song, M., Yang, Z., and Liao, X., Appl. Surf. Sci., 2021, vol. 547, p. 149222.

    Article  CAS  Google Scholar 

  33. Ahmad, M., Chen, S., Ye, F., Quan, X., Afzal, S., Yu, H., and Zhao, X., Appl. Catal. B: Environ., 2019, vol. 245, p. 428.

    Article  CAS  Google Scholar 

  34. Dhakshinamoorthy, A., Alvaro, M., Hwang, Y.K., Seo, Y.K., Corma, A., and Garcia, H., Dalton Transact., 2011, vol. 40, no. 40, p. 10719.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank L.A. Selyunina (Faculty of Chemistry, National Research Tomsk State University) for conducting SEM studies.

Funding

This work was supported by the Russian Foundation for Basic Research and the Administration of the Tomsk oblast within the framework of research project no. 19-43-700008 r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Matskan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: MOF, metal–organic framework; SEM, scanning electron microscopy; TG, thermogravimetry; DSC, differential scanning calorimetry; XRD, X-ray diffraction analysis; BET, Brunauer–Emmett–Teller method; SBET, specific surface area; Smicro, specific surface area of micropores, Sext, specific surface area of the external surface (not involving the specific surface area of micropores); Vtot, total pore volume; Vmicro, micropore volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskan, P.A., Evdokimova, E.V. & Mamontov, G.V. Composites Based on MIL-100(Fe) and Diatomite for the Photo-Fenton Degradation of Phenol. Kinet Catal 64, 421–430 (2023). https://doi.org/10.1134/S0023158423040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040067

Keywords:

Navigation